
GET OVER THE BOUNDARIES BETWEEN CLIENT AND SERVER IN WEB APP DEVELOPMENT

ALBERTO BERTI

EuroPython 2017 in Rimini

ALBERTO@ARSTECNICA.IT

1

mailto:alberto@arstecnica.it

TABLE OF CONTENTS
What I mean with web app
How a web app is today built using Python tools?
Dealing with JavaScript is inevitable
Back to Python
Welcome Raccoon
The idea
reduce mind context-switching burden while coding both Python and JS code
Anatomy of a Raccoon user session
An example of a raccoon application context
Data synchronization originates on the server
There's no routing
an example
Scaling
Finally

2

WHAT I MEAN WITH WEB APP
an interface to relational data
replacement for desktop database applications
data intensive with features like

�ltering
reordering

optimized to show many records
complex forms
master-detail

3 . 1

often heavily customized to meet customer's needs
narrower user base than public web publishing
often installed on premise or cloud distributed for intranet use
usually they are called SPA, or Single Page Applications

3 . 2

HOW A WEB APP IS TODAY BUILT USING PYTHON
TOOLS?

develop a database structure that best helps persisting domain data
pick your server framework
optionally develop an ORM to access the data
expose the data using REST or some other solution

4 . 1

BUT THEN…
pick a JavaScript application framework
develop the application logic and user interaction

4 . 2

DEALING WITH JAVASCRIPT IS INEVITABLE
even if it has many inconsistencies
every now and then a new trendy framework appears and reinvents the wheel, in a cooler way
it has a broader developer base than Python
often the libraries and packages have poor quality

5 . 1

BUT ES6 IS BETTER!
it is way better than previous iterations

Classes
Promises
iterators
generators
Map and Set implemented natively

5 . 2

MY REACTION TO WEAKMAP AND WEAKSET
�nally! Fantastic!
What I was waiting for!

5 . 3

BUT THEN I DISCOVERED THAT
it isn't possible to known which elements or keys (or values) the object contains
it is equally impossible to iterate over any of them
it is only possible to check if a given element or key is contained

5 . 4

WHAT?

5 . 5

JS DEVELOPERS SEEMS HAPPY WITH IT
Some have even found an use for them:
From :

They call it a security property…

Exploring ES6
It is impossible to inspect the innards of a WeakMap, to get an overview
of them.
[…]
These restrictions enable a security property. Quoting Mark Miller: “The
mapping from weakmap/key pair value can only be observed or
a�ected by someone who has both the weakmap and the key. […]”

5 . 6

http://exploringjs.com/es6/ch_maps-sets.html#sec_weakmap

TYPESCRIPT TO THE RESCUE!
Ride the TypeScript hype!
This seems fun to me:

from reddit's blog entry: of just few days ago

class Animal {}
class Bird extends Animal {}

const foo: Array<Bird> = [];

foo.push(new Animal()); // ok in typescript
Why We Chose Typescript

5 . 7

https://redditblog.com/2017/06/30/why-we-chose-typescript/

WHAT?

5 . 8

BACK TO PYTHON

6 . 1

THE ROLE OF PYTHON IN MODERN WEB APPS
the role of the Python server has become that of a data hub
no application-level development, it moved to the JS app… sad
usually the fun ends with the completion of the database structure - ORM part

6 . 2

HOW WEB FRAMEWORKS DO THEIR JOB?
Most major Python web frameworks (used to build the server part of our applications) are modeled
around HTTP with its request-response model
handlers attach to (choose your level of complexity) resource paths
a client makes a request
the request is the main context object often with the help of session data.
objects are created, data is retrieved, a response object with numeric result codes and your content is
created
the response is serialized, some state is saved to the session
the objects are destroyed
When do we really need REST APIs we think they are really needed when your application has to
interface with other services and your service provides an API to its users.

6 . 3

IS IT POSSIBLE TO IMMAGINE A DIFFERENT MODEL?
Desktop applications using PyQt or PyGTK are driven completely by Python objects, interfacing with
the toolkit's ui elements

6 . 4

WELCOME RACCOON
In late 2016 we decided to replace an old application named Safety with a new application and
develop a new framework along with it to try bring back the fun when developing a web app with
Python
Safety is an application to asses and report working environment health risks.
Goodbye Safety
Welcome Raccoon and Ytefas (or ʎʇǝɟɐs made right)

7 . 1

THE IDEA
use an asynchronous system to ease maintaining the state in the server
do the same on the client for the state that drives the UI
connect these two elements with a modern RPC and event system
bring some application-level logic back to Python

8 . 1

ASYNC FROM THE GROUND UP
PostgreSQL and to de�ne and maintain the database
AsyncPG and SQLAlchemy for data access
Crossbar's WAMP router for RPC and events
aiohttp for HTTP

PatchDB

8 . 2

https://pypi.org/project/metapensiero.sphinx.patchdb/

DATA ACCESS LAYER
SQLAlchemy's ORM cannot be used in an async environment
ORM is used anyway in tests and to carry �eld-level metadata
AsyncPG is fast but has no symbolic query api
we plugged SQLAlchemy's symbolic query rendering with AsyncPG

8 . 3

RPC
Crossbar has a lot of features and supports clients written in any of the major languages used today
built with Twisted, its Python client library supports both Twisted and asyncio applications
it's the primary implementation of a protocol router
most of the con�guration setup is asynchronous
uses a dotted string as endpoint/topic address
error handling
simple registration/subscription system out of the box

WAMP

8 . 4

http://wamp.io/

RACCOON
It's based on a Node mixin class

class level de�nition of signals (events), event handlers, and rpc endpoints
Node's basic API is composed of just four coroutines:

node.node_bind(path, node_context=None, parent=None)
node.node_add(name, node)
node.node_remove(name)
node.node_unbind()

and the corresponding signals:
on_node_bind
on_node_add
on_node_unbind

8 . 5

"path" is a dotted string compatible with Crossbar's addresses or a special Path instance.
"node_context" is a instance of NodeContext which is basically a prototype-like namespace which
inherits its members from its parent. Its role is to:

carry connectivity information and security wrappers
supplement the role of the request object in other frameworks

Path instances with the help of the node_context are pluggable resolvers

node.node_bind(path, node_context=None, parent=None)

8 . 6

EXAMPLE OF THREE NODES INTERACTION IN PYTHON
 1: @pytest.mark.asyncio
 2: async def test_node_communication(connection1, connection2):
 3:
 4: import asyncio
 5: from metapensiero.signal import Signal, handler
 6: from raccoon.rocky.node import WAMPNode as Node, Path, call
 7:
 8: await when_connected(connection1)
 9: await when_connected(connection2)
10:
11: ev = asyncio.Event()
12: �rst = Node()
13:
14: class Second(Node):
15: on_foo = Signal()
16:
17: async def call_third(self):
18: await self.remote('@third').rpc('hello')
19:
20: class Third(Node):
21: def __init__(self):

22: self.handler_args = None

22: self.handler_args = None
23: self.somenthing = None
24:
25: @handler('@�rst.second')
26: def do_on_second_foo(self, *args):
27: self.handler_args = args
28: ev.set()
29:
30: @call
31: async def rpc(self, something):
32: self.something = something

8 . 7

33: base = Path('test')
34: second = Second()
35: third = Third()
36:
37: await �rst.node_bind(base + '�rst', connection1.new_context())
38: await third.node_bind(base + 'third', connection2.new_context())
39: await �rst.node_add('second', second)
40:
41: await second.call_third()
42: await second.on_foo.notify('hello handler')
43: await ev.wait()
44:
45: assert third.something == 'hello' and third.handler_args == ('hello handler',)
46: await �rst.node_unbind()
47: await third.node_unbind()

8 . 8

.. AND IN JAVASCRIPT
 1: from __globals__ import expect, it, jest
 2:
 3: from raccoon__rocky import (WAMPNode as Node, Path, call,
 4: Signal, handler, reversed_promise,
 5: register_signals)
 6:
 7: from raccoon__rocky.testing import gen_ctx
 8:
 9: async def test_node_communication():
10: ctx1, ctx2 = gen_ctx(), gen_ctx()
11: ev = reversed_promise()
12: �rst = Node()
13:
14: @register_signals
15: class Second(Node):
16: on_foo = Signal()
17:
18: async def call_third(self):
19: await self.remote('@third').rpc('hello')
20:
21: @register_signals

22: class Third(Node):

22: class Third(Node):
23: def __init__(self):
24: self.handler_args = None
25: self.somenthing = None
26:
27: @handler('@�rst.second')
28: def do_on_second_foo(self, *args):
29: self.handler_args = args
30: ev.resolve()
31:
32: @call
33: async def rpc(self, something):
34: self.something = something

8 . 9

35: base = Path('test')
36: second = Second()
37: third = Third()
38:
39: await �rst.node_bind(base + '�rst', ctx1)
40: await third.node_bind(base + 'third', ctx2)
41: await �rst.node_add('second', second)
42:
43: await second.call_third()
44: await second.on_foo.notify('hello handler')
45: await ev
46:
47: expect(third.something).toEqual('hello')
48: expect(third.handler_args).toEqual(('hello handler',))
49:
50: await �rst.node_unbind()
51: await third.node_unbind()
52:
53: it('Basic com works', test_node_communication)

8 . 10

REDUCE MIND CONTEXT-SWITCHING BURDEN WHILE
CODING BOTH PYTHON AND JS CODE

Raccoon is equally available in both Python and JavaScript thanks to that we use
together with and .
We use the same abstractions like generators, async/await, decorators using the same syntax and
producing code that can be run down to Firefox 49 (no, we do not test on IE).

JavaScripthon
BabelJS Webpack

9 . 1

https://github.com/azazel75/metapensiero.pj
http://babeljs.io/
https://webpack.js.org/

ANATOMY OF A RACCOON USER SESSION

client

server

a sessionWAMP

WAMP

HTTP
SessionMember(client)

View1
Service

SessionRoot

SessionMember(server)

User(demo)
DataSource(risk.companies)

DataSource(risk.employees)

Controller1

Crossbar

PostgreSQL

Service is an aiohttp application It publishes an entrypoint in WAMP
Usually a Controller (sever side) and a View (client side) are paired together in what's called "a
context" and can use relative paths (beginning with '#') to refer to each other resources.

10 . 1

AN EXAMPLE OF A RACCOON APPLICATION CONTEXT
context ExampleViewExampleController

current_id

data

data
current_id, dirty, �lters, sorters

states

enabled, info

run

DataCursor(name=master)
DataCursor(name=detail)

AddAction(cname=detail, name=add)

DataProxy(cname=master)

DataProxy(cname=detail)

AddDetailButton(provider=detail, name=add)

DataSource(risk.companies) DataSource(risk.employees)

UI Toolkit

the controller has relative address #controller
the view has relative address #view
a cursor handles data and has notion of a "currentid"
a proxy drives the ui and sends back information about the currentid and if some change is pending
(dirty state)
an action a�ect the current context or can start a new one
they are all subclasses of Node

11 . 1

DATA SYNCHRONIZATION ORIGINATES ON THE SERVER
the client sends back to the server status information that allow the server side to re-synchronize its
"data sources" and send updates to the client.
every Node is also a "reactive dictionary" (using the package) capable of storing
immutable data and automatically noti�es interested parties of data changes.
a change of currentid in the "master" cursor triggers a reload (async) of the "detail" cursors that's
tracking master['current_id'] value.
this way there is now need to setup "data relations" on the toolkit.

metapensiero.reactive

12 . 1

https://github.com/azazel75/metapensiero.reactive

THERE'S NO ROUTING
Raccoon borrows the Intent concept from Android
any data that can be expressed using a DataSource (SQL for now) is serializable to a Content instance
a Controller declares conditions that must be full�lled for it to be elected as a candidate
the most important is the kind of Operation it can "realize" (view, create, edit, pick…)

13 . 1

AN EXAMPLE
Some textual examples:
the Desktop context/view gets executed because is the only one that can do the operation "view" on
an "auth.user" content, the user that just logged in
class Desktop(Controller):
 OPERATION = OPERATIONS.VIEW
 CONTENT = {(Content.source == 'auth.users') & (Content.len == 1)}
 CURSORS = {
 'user': 'auth.users',
 }
 VIEW = {
 'type': 'Desktop',
 }

 class Logout(Action):

 ID = 'logout'
 CATEGORIES = ('session',)
 LABEL = _('Logout')
 HINT = _('Leave this session.')
 ICON = 'sign-out'

 @call
 async def run(self):
 await self.remote('#view').logout()

14 . 1

SCALING
our server probably consumes more memory that other frameworks
deploied using docker containers in a environment
can be scaled HAProxy and Rancher's service sidekiks

Rancher

15 . 1

http://rancher.com/

FINALLY
Raccoon isn't public yet but it will be when it's in good shape (documentation, pluggability, more tests)
and we decided on the license.
if you are interested in a demo account to try Ytefas and play with it or simply want to know more just
ask me or drop me a line.
Thank you
Alberto Berti ()
Github:

alberto@arstecnica.it
https://github.com/azazel75

16 . 1

mailto:alberto@arstecnica.it
https://github.com/azazel75

