7/13/17

A HANDS-ON APPROACH TO
TUNING PYTHON APPLICATIONS
FOR PERFORMANGE

David Liu, Python Technical Consultant Engineer (Intel)
Dr. Javier Conejero, Barcelona Supercomputing Center

(intel' Software

OVERVIEW

= Introduction & Tools of the Trade for optimizing Python performance
= Native Performance libraries

= Performance profilers

= Parallelism tools and other accelerators

= Hands-on activity: Optimizing Black Scholes algorithm

= Hands-on activity: Collaborative Filtering example

= Real world Application example: PyCOMPSs from Barcelona
Supercomputing Center

= Summary

ation. AH rights reserved. Intel and the Intel lo g e trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

vb clai med s the pr e of other: intel' Software . 2

ame nd
For more ¢ pu S renciane mpiler optimizations, s eourﬂ;:rum.Hnmuwm.

7/13/17

PYTHON PERFORMANCE INTRODUCTION

= How does one obtain addition performance on one’s Python code?
= What tools are available to diagnose these issues?

= What types of issues are we looking for?

= What types of fixes are available?

its subsidiaries in the U.S. and/or other countries.

intel' Software . 3

PYTHON PERFORMANCE INTRODUCTION (CON'T)

= How does one obtain addition performance on one’s Python code?

= Through better usage of correct data structures for a given
problem

= By leveraging the base language’s strengths to full advantage
» By refactoring one’s code where inefficiencies are present

= By moving parts of code to a more native performance library
= By using specialized tools that get closer to C or JIT the code

= By leveraging specialized frameworks that are made for
accelerated tasks

© 2017 Intel iy el and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Oth of oth

(intel) software . 4

7/13/17

PYTHON PERFORMANCE INTRODUCTION (CON'T)

= What tools are available to diagnose these issues?

= Code profilers
= Code, Memory, Vectorization
= cProfile, Perf, line_profiler, Intel® VTune ™
= Memory_profiler, Intel Vtune ™
= Intel® Advisor, Intel® Inspector

= Analyzers
= For MPI and similar messaging protocols
= Intel® Trace Analyzer and Collector
= System profilers
= Full system, OS-level
= Linux: sysprof

intel' Software .

5

PYTHON PERFORMANCE INTRODUCTION (CON'T)

= What types of issues are we looking for?
= |mproper loop structure

= Penalty for misuse of a data structure (dict when it should be a list,
list when it should be a tuple, etc.)

= Syntax and coding mistakes

= Python language bottlenecks

= Vectorization

= Tasks ill-fitted for Python that should be in translated to C++

(intel) software .

6

7/13/17

PYTHON PERFORMANCE INTRODUCTION (CON'T)

= What types of fixes are available?
= Syntax and Code fixes at the Python level
= Syntax and Code fixes at the C++ level
= Migration of code to the C++ level
= Refactoring with specialized frameworks
= Syntax and Code fixes at the Messaging protocol level
= Refactoring to utilize a distributed framework

Software

NATIVE PERFORMANCE LIBRARIES

7/13/17

NATIVE PERFORMANCE LIBRARIES OFFERED BY INTEL

Solutions % & @ g\
for reference across industries %

q Tools/Platforms Intel® Deep Learning SDK
- : for Training &
(lntel to accelerate deployment Deployk e
strategy Optimized Frameworks Soark’ theano 3
. . . - [Y Tensor'
Provi des to simplify development Caffe 1 torch E

the

. Li braries/Languages Intel® Math Kernel Intel® Data Analytics M€
fO un d ation featuring optimized building blocks [Lrary (Intel® MKL Acceleration Library Pj.;rformance Distribution
& MKL-DNN) (Intel® DAAL) nimitives for Python*
for success (ntel* IPP)
using Al Hardware Technology — =7 — NS
portfolio that is broad and cross- scmconll [Sion e o | +Memory
compatible o bz BT L e — S
| Datacenter < $ Endpoint torage

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

For more complete information about compiler optimizations, see our Optimization Notice.

intel' Software .

NATIVE PERFORMANCE LIBRARIES (CON'T)

= Languages:
= Intel® Distribution for Python*

= Other performance libraries and tools
= Cython*
= Numba*
= Numexpr*

NumPy*

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

C _ |nte| Software . 10
For more complete information about compiler optimizations, see our Optimization Notice.

7/13/17

NATIVE PERFORMANCE LIBRARIES (CON'T)

= Numerical and Performance Libraries:

= |ntel® C++ Compiler
= |ntel® Threading Building Blocks
= Intel® MPI Library

el Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its su
and brand:

es rands may be claimed as the property of others.
or more complete information about compiler optimizations, see our C

= Intel® Math Kernel Library (Intel® MKL & MKL-DNN)
= |ntel® Integrated Performance Primitives (Intel® IPP)
= Intel® Data Analytics Acceleration Library (Intel® DAAL)

bsidiaries in the U.S. and/or other countries.

intel' Software .

11

NATIVE PERFORMANCE LIBRARIES (CON'T)

for given hardware

stock OpenBLAS implementation

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its s
an

*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our O

ubsidiaries in the U.S. and/or other countries.

= Native Libraries help utilize functions with best vectorization available

= |f one's code or parts of the package are in C++, usage of an Intel® MKL
variant can provide multiplication factors of performance over the

= Placement of certain algorithms in one’s code for data analysis can be
refactored to be called with Intel® DAAL

= Hardware accelerated MPI with Intel® MPI
= Use the Intel® Distribution for Python* as a starting point

(intel) software .

12

7/13/17

FROM SINGLE CORE, TO MULTICORE, TO MANY CORE

= Purpose of libraries (e

is to he[p Sca[ing of Parallel Models

Source

code over various
types of hardware

= These are some of
the ways we've

accelerated Lty

Num Py*/ Sci Py* fgp:gi?g;f) Multicore
o Multicore & Many-core

/Scikit-learn* Ouster ™ cster

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and n a)

med as the property of others. intel) software . 13
ice. (e

For more complete information about compiler optimizations, see our Opi

INTEL® MATH KERNEL LIBRARY (MKL)

= Features highly optimized, threaded, and vectorized math
functions that maximize performance on each processor family

= Utilizes industry-standard C and Fortran APIs for compatibility
with popular BLAS, LAPACK, and FFTW functions—no code
changes required

= Dispatches optimized code for each processor automatically
without the need to branch code

= One of the main performance libraries when making numerical
optimizations in one’s code (mostly at the C/C++ level)

= |sused directly in the optimized NumPy*/SciPy* for The Intel®
Distribution for Python*

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 14

For more complete information about compiler optimizations, see our Optimization Notice.

7/13/17

INTEL® DATA ANALYTICS ACCELERATION LIBRARY (INTEL® DAAL)

= Features highly tuned functions for deep learning, classical machine
learning, and data analytics performance across spectrum of Intel®
architecture devices

= Optimizes data ingestion together with algorithmic computation for
highest analytics throughput

= Includes Python* (PyDAAL), C++, and Java* APIs and connectors to
popular data sources including Spark* and Hadoop*

2017 Im l Corpa a(on. All rights reserved. Inlel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
‘0 o i

may be claimed as the property of others. ‘ ‘ intel' Software . 15

re compl ete i nfa rmation about compiler op(mizations, see our Optimization Notice.

INTEI.® DAAI.: HETERUGENEUUS ANAI.YTIBS ﬁt‘i?)isl;?slgf?\}vsaoreiTn?gl.ec':)?nc;g;c—i:s/artides/opendaal

. Targeti both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel®
Atom™

= Perform analysis close to data source (sensor/client/server) to optimize response
latency, decrease network bandwidth utilization, and maximize security

= Offload data to server/cluster for complex and large-scale analytics

Pre-processing Transformation Modeling » Decision Making
—-— @ & ‘
<2
% ? dﬁ .0 o ..||||||||. @
@ C

Scientific/Engineering

Regression
(De-)Compression PCA « Linear Clustering
(De-)Serialization Statistical moments * Ridge + Kmeans
Quantiles + EMGMM
Variance matrix Classification laborative filteri
QRY.SV.DY Cholesky : gl\a;\l\\jle Bayes .CoAaLSora ive filtering
Apn(_)n . + Classifier boosting
Outlier detection + kNN Neural Networks

» Decision Trees

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel) software . 1G
For more complete information about compiler optimizations, see our Optimization Notice. L =

7/13/17

INTEL” DISTRIBUTION FOR PYTHON* 2017

Advancing Python performance closer to native speeds

Easy, out-of-the-box «Prebuilt & optimized for numerical computing, HPC, data analytics
. «Drop in replacement for your existing Python. No code changes required
access to h Igh «Jupyter* Notebooks, Matplotlib* included
pe rfo rmance Pyt h on «Compatible with and powered by Anaconda, supports conda and pip

H igh perfO rmance with «Accelerated NumPy*/SciPy*/Scikit-Learn* with Intel® MKL and Intel® DAAL
. . . . «Data analytics with Scikit-learn*, pyDAAL, Caffe*, Theano*
mu ltl ple Optl mization «Numba* and Cython* included for tuning hotspots to scale

tech n |q ues «Comes with MPI4Py, works with Dask* and PySpark*

Faster access to lateSt « Distribution and individual optimized packages available through

Opti mizations for Intel conda and Anaconda Cloud: anaconda.org/intel
architecture « Optimizations upstreamed back to main Python trunk

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 17
ce.

For more complete information about compiler optimizations, see our Opti

INSTALLING INTEL" DISTRIBUTION FOR PYTHON* 2017

Stand-alone installer and anaconda.org/intel

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

OR

> conda config --add channels intel
> conda install intelpython3 core

> conda install intelpython3 full
Apt/Yum

also
docker pull intelpython/intelpython3 full available

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are tradem: of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of other: intel' Software . 18

For more complete information about compiler optimizations, see our C

7/13/17

Software

PERFORMANGE PROFILERS

PYTHON PROFILERS

= Profiling one's code is the initial step of investigation for performance
tuning

= Many options exist to get large and small granularity insights to one’s
code

= All profilers have certain characteristics that one need to take into
account—using the one that best suits the nature of one’s workflow is
best

= Insights from profiling lead to direction of optimizations to follow, or
possible refactoring path

are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

intel' Software . 20

imization Notice.

10

7/13/17

SHORT OVERVIEW OF PYTHON PROFILERS

Intel® VTune™ Rich GUI viewer Windows Line ~1.1-1.6x
Amplifier . Mixed C/C++/Python code Linux
cProfile (built-in) * Textinteractive mode: “pstats” Any Function 1.3x-5x
(built-in)
GUI viewer: RunSnakeRun (Open
Source)
PyCharm
Python Tools e Visual Studio (2010+) Windows Function ~2x
. Open Source
line_profiler . Pure Python Any Line Up to
(package) e Open Source 10x or more
Text-only viewer
VMProf . Mixed C++/Python mode Linux, limited Line N/A
e CPython and PyPy Windows (32-bit)

* Open Source

* Measured against Grand Unified Python Benchmark

Machine specs: HP EliteBook 850 G1; Intel® Core™ i5-4300U @1.90 Ghz (4 cores with HT on) CPU; 16 GB RAM; Windows 8.1 x86_64

_ 01 7 Imel Corpora(ion. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

e property of others. intel' Software . 21

Fo r mor ecomplete nfa ma(an abou tcomple optimizations, see our Optimization Notice.

CPROFILE AND LINE_PROFILIER

= CProfile is C extension variant of profile (all Python), has decent
overhead for usage

= Line_profiler has a much deeper granularity at much higher price
= Easy to instantiate from REPL and Jupyter Notebooks

= Function level vs line-level will depend on what type of Python code is
being profiled—single function? Full Program?

= From top level, even simple %timeit or timeit might be good enough

= Continuum’s accelerate module has a bokeh visualization of cProfile if
needed

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 22
otice.

For more complete information about compiler optimizations, see our Opt

11

7/13/17

INTEL” VTUNE ™ AMPLIFIER

Profile one’s source code to check for hotspots, measure utilization

Determine optimal vectorization for Intel® processors (C/C++)

Take advantage of non-uniform memory architectures and cache

(C/C++)

Helps one’'s code translate from multi-core to many-core systems,

such as Xeon Phi™
Determine IO and CPU-bound behaviors

Useful even if one’s code is non-numerical (such as Django, Buildbot,

etc.)

erved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
hers.

ed as the property of other:

(intel) software .

23

import math

cdef class SlowpokeCore:
cdef public object N
def init (self, N):

self.N = N

cdef double doWork (self, int N)
cdef int i, j, k
cdef double res
res = 0
for j in range (N) :

k=0
for i in range(N) :
k +=1

res += k
return math.log(res)

def str (self):
return 'SlowpokeCore: Sf'

el and the Intel logo are trademarks of Intel Corporation or its s
rs.

1t
he prope

% self.doWork (self.N)

ubsidiaries in the U.S. and/or other countries.

MIXED C/PYTHON EXAMPLE TO PROFILE: CORE.PYX (CYTHON-BASED)

(intel) Software .

24

12

7/13/17

MIXED C/PYTHON EXAMPLE TO PROFILE: MAIN.PY

from slowpoke import SlowpokeCore
import logging
import time

def makeParams () :
objects tuple (SlowpokeCore (50000) for _ in xrange (50))
template = ''.join('{%d}"' i for i in xrange (len (objects)))
return template, objects

def calc pi():
removed for readability; pure-Python function was here

def doLog() :
template, objects = makeParams ()
for in xrange(1000):
calc pil()
logging.info (template.format (“objects))

def main () :

logging.basicConfig ()

start = time.time ()

doLog ()

stop = time.time ()

print ('run took: %.3f' (stop - start))
if name =
main ()

o~

= ' main ':

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

For more complete information about compiler optimizations, see our Optimization Notice.

*Other names and brands may be claimed as the property of others. intel' Software

INTEL" VTUNE™ AMPLIFIER EXAMPLE

% Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
Type| |2 Collection Log| | ¥ Summary | ERLRGINENY «% Caller/Callee| |** Top-down Tree| | B Platform|| % ma
Grouping: ~|Function / Call Stack CPU Time -
| Viewing 4 10f1) selected stack(s)
100.0% (2.904s of 2.904s)
Function / Call Stack CPU Timev Module Funct|

core.pyd!_pyx f 4core 12SlowpokeCore
core.pyd!_pyx pf 4core 12SlowpokeCore.

call+0x2b7 - ceval.c:4.
#_pyx_f_4core_12SlowpokeCore_doWork 2.904s _ core.pyd _pyx_f_4cor(
@ ext_do_call 0.1 505. python27.dIl ext_do_call £ on+0x3b6 - ceval.c4..
. o N ain.pylmain+0x18 - main.py: 18
BPyString_Format python27.dIl PyString_Fo| ¢ python27.dilicall_function+0x3b6 - ceval.c:4..

#info _init_py info(msg, *a| || mainpyicmodule>+0x51 - mainpy:23

} python27.dII'Py_Main+0xb20 - main.c:643
\

©PyDict_Getitem python27.dll PyDict_Getlt|] ihon exel_tmainCRTStartup+0x119 - crte..
#PyCFunction_Call python27.dll PyCFunctior| ||| KERNEL32 DLLIBaseThreadinitThunk+0x2..
. . s - B ntdll.dllRtUserThreadStart+0x33 - [unkno.
PyObject_GenericGetAttrWithDict 0.00 ‘ python27.dIl PyObject_Ge
Selected 1 row(s): 2.904s .
<[N m] »
woQec-Ce 05 1s 15 25 255 35 . [l[Tveas =
mainCTstarp.| I, < = R.rina
iuk CPU Time
3 [¥] ik Spin and ...
2 [[1¥ CPU Sample
i<
= [V] CPU Usage
iuk CPU Time
b duk Spin and ...
CPU Usage

© 2017 Intel Corporation. All rights reserved. Intel and the InteNkgctrireetspletmr kbR Elite BOnkBSD G 45, i telfsiares in5h3081an@/er3d6heo{hutres with HT on) CPU; 16 GB RA
*Other names and brands may be claimed as the property of ofgidows 8.1 x86. 64
For more complete information about compiler optimizations, see our Optimization Notice.

Software 26

13

7/13/17

INTEL" VTUNE™ AMPLIFIER - SOURGE VIEW [MAIN.PY)

™ Basic Hotspots Hotspots by CPU Usage viewpoint (change) INTEL VTUNE AMPLIFIER XE 2017

llection Log| | K S ary| |*% Bottom-u Caller/Callee| |+ Top-down Tree| | B8 Platform | [EXnEt¥en

@ Assembly grouping: | Address -

~ QViewing 4 1of1 | selected stack(s)

CPU Time -

S. . 100.0% (2.904s of 2.904s)
- 2
Li. XS GO core.pyd!_pyx f 4core 12SlowpokeCore.
core.pyd!_pyx_pf dcore 12SlowpokeCore...

0x2b7 - ceval.c4..

main.pyidol og
python27.dil
main pyimain+0x18 - main.py: 18

- : - python27.dlllcall_function+0x3b6 - ceval.c4...
4 main py!<module>+0x51 - main. py:23
python27.dllIPy_Main+0xb20 - main.c:643
python.exe!_tmainCRTStartup+0x119 - crte.

) KERNEL32.DLLIBaseThreadinitThunk+0x2..
ntdll.dilRYlUserThreadStart+0x33 - [unkno.

n

10 def doLog() :
11 template, objects = makeParams ()

12 for _ in xrange(1000):

I 13 > logging.info (template.format (*objects)) 92.1 I

© 2017 Intel Corporation. All rights reserved. Intel and the InteNigotvreetsde rmr kPO Elite Book 850 G 45 ik telsidareinsh308.3r@/er38@heofhtdrses with HT on) CPU; 16 GB RA
*Other names and brands may be claimed as the property of offisdows 8 i 86 6
For more complete information about compiler optimizations, see our Optir

Software

27

A Basic Hotspots Hotspots by CPU Usage viewpoint (change) INTEL VTUNE AMPLIFIER XE 2017

B corec

[¥1] [] | Assembly grouping: [adaress ~J{ cPuTime

~ JViewing q 1of1 D selected stack(s)

S. . TUT 100.0% (2.904s of 2.904s)
-
Li. ource m core.pyd{_pyx f 4core 12SlowpokeCore

core.pyd!_pyx pf 4core 12SlowpokeCore.
python27.dlllext do_call+0x2b7 - ceval.c4..

858 main.pyldoLog+0x30 - main.py:13
859 /% "core.pyx":15 python27.dlllcall_function+0x3b6 - ceval.c:4...
g0 |+ for 1 in zange (M) main pyimain+0x18 - main.py 18

: python27.dlllcall_function+0x3b6 - ceval.c:4
861 k4= 1 = main pyl<module>+0x51 - main py:23

=] python27.diPy Main+0x620 - main.c:643

862 | * Tes =k F << python.exe!_tmainCRTStartup+0x119 - crte.
863 * return math.log (res) KERNEL32 DLLIBaseThreadiniThunk+0x2

ntdll.dII'RiUserThreadStart+0x33 - [unkno...

869 /% "core.pyx":16

870 * k +=1

871 * res += k

872 * return math.log(res) F <<LLLLLLRLRRKRK

873 *

874 * def _ str_ (self):

Sele.. -
‘ i = ,

© 2017 Intel Corporation. All rights reserved. Intel and the InteNkgctrireetspletmr kbR Elite BOnkBSD G 45, i telfsiares in5h3081an@/er3d6heo{hutres with HT on) CPU; 16 GB RA
*Other names and brands may be claimed as the property of of\fiisdows 8.1 x86_64
For more complete information about compiler optimizations, see our Optimization Notice.

Software

28

14

7/13/17

VTUNE EXAMPLE

/home/blgboss/Intel/amplxe/projects/ep2017_tutorlal - Intel VTune Amplfier

/home/bigboss/intel/amplxe/projects/ep2017_tutorlal - Intel VTune Amplifier
ey

et S P B D®E @ wlone [banae X

homefbigbossntel/amplxe/projects - L
g /n e /t 2 :/ !‘ amelie/project £ Basic Hotspots Hotspots by CPU Usage viewpoint (change) © INTELVTUNE AMPLIFIER 2018
+ @o,benchmark . DcolltionLog © AnalysisTarget A AnalysisType § summary @ Bottomup @ Caller/Callee @ Top-down Tree = Platform >

X gz“"“:""l Elapsed Time ": 0.703s
N nw";— o CPU Time. 0.690s.
ebinar o T Court. 1
B @ ep2017_tutorisl PauseaTin o

Top Hotspots
T secton 555 aton, Optimizing

% bs_numexpr
% bs.dask Functon Mo cPuTime
Tom_rtso

_nave.py

tie-tynanic so

i x8564.50.2

e sedes math.cpyihon 35m-x86_64inucgnuso

CPU Usage Histogram
This istograr dispiays a percentage o the el ime the specific nmber of CPUS wererunving simutaneous'y. Spi and Overhead ime adds o he e CPU usage vale.
700ms
sooms.

So0ms.

TargetUizaton

00ms

00ms.

200ms

}

Simuanously Unizea Logcal CPUS

Collection and Platform Info
This secton povides nformation about tis collecton,incluing rest set size and collecton platfom data
tutoril_ume, schales_script versionsibs_naiv.

Operaing System: 45,051 goner NAME="Uburt” VERSION="16.04.2 LTS (Xenial Xerus)" ID=uountu ID_ LIKE=goban PRETTY_NAME="Uburit 16,04 LTS" VERSION ID="16.04"
HOME URL= i vsmsubuntu com’” SUPPORT URL~"hig: el ubutu.com” BUG REPORT URL1eihuge. tunchpatnet cul* VERSION. CODENA

2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others. intel) software . 29
For more complete information about compiler optimizations, see our Optim

INTEL" VTUNE™ AMPLIFIER DETAILS

= Line-level profiling details:

= Uses sampling profiling technique

= Average overhead ~1.7x-1.6x (on certain benchmarks *)
= Cross-platform:

= Windows and Linux (Viewer-only on OSX)
= Python 32-and 64-bit; 2.7.x, 3.5.X versions (3.6 with 2018 Beta)

* Measured against Grand Unified Python Benchmark

Machine specs: HP EliteBook 850 G1; Intel® Core™ i5-4300U @1.90 Ghz (4 cores with HT on) CPU; 16 GB RAM; Windows 8.1 x86_64

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 30

For more complete information about compiler optimizations, see our Optimization Notice.

15

7/13/17

PROFILER SUMMARY

= Profilers should be the first step when after a visual inspection does
not net performance advantages

= Without Code Profilers, one is pretty much lost without the insight
provided by them, especially with the complexity of Python

= Each of the open source profilers have different aspects they are good
at (or that they can see), so use accordingly

= Tools such as VTune™ provide source, function, and hardware level
information if the open source profilers aren’t enough

= Test often, and if in doubt profile your code!

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands m. hers.

ay be claimed as the property of ol intel' Software .
tice.

Software

PARALLELISM AND OTHER ACCELERATORS

31

16

7/13/17

MANY TYPES OF PARALLELISM

= Parallelism is the best way to achieve performance gains in Python
= Examples:
= Message passing
= MPI4Py*, Dask*
= General parallelism
= multiprocessing, Dask*
= Multi-format parallelism
= Cython* Numba*
= TBB, OpenMP are backends/runtimes
= Numexpr*, NumPy*, et al.
= At lower levels: OpenMP, TBB, and MKL, DAAL calls

el Corporation. All ri reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
nd brands may

nesa s may be claimed as the property of others. intel' Software . 33
r more complete information about compiler optimizations, see our Optimization Notice.

DISTRIBUTED COMPUTING LANDSCAPE

mpidpy pySpark Dask/distributed

= New distributed computing technologies appear almost every year

= These technologies help Python achieve task-based parallelism and
mitigate the issues that many people have with Python

© 2017 Intel Co tion. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
aimed as the property of others.

intel' Software . 34

17

7/13/17

TWO DIFFERENT FLAVORS OF DISTRIBUTED: DASK AND MPI4PY

= MPI4PY*

= Access to the MPI Library at the Python level

= Accelerated with Intel® MPI Library

= Best for composing things that have complex relationships
= Dask*

= Framework that uses distributed futures to construct tasks graphs
and execute via a scheduler

= Specialized for computational workloads (numerical Python
parallelism), and comes with a lot of built-in functionality

its subsidiaries in the U.S. and/or other countries.

intel' Software .

35

MPI4PY

= Allows one to utilize the from mpidpy import MPI
. import numpy
Message Passing Interface
: def matvec (comm, A, x):
(MPI) with the Python language = A shapeld] # local rows
. p = comm.Get_size()
= Designed for the parallel Xg = numpy.zeros(m*p, dtype='d')
computing world comm.Allgather ([x, MPI.DOUBLE],
[xg, MPI.DOUBLE])
= (Can handle very complex ﬁeiu”r“r?Pyy-dWA» xg)
relationships that don't
necessarily fit “templates” of Image From MPI readthedocs
other distributed task
frameworks

© 2017 Intel iy el and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Oth of oth

(inteD software | 36

18

7/13/17

DASK

Collections Task Graph Schedulers

Easy way of accessing bag hreaded

distributed task-parallelism mult-processmg
in the NumPy*/SciPy* yw‘
==

ecosystem

Comes with Task Graphs,
Delayed wrappers,
diagnostic server

Can scale up and down
quickly depending on
needs (local computer, full
cluster)

Image From D&sk* documentation

_ O‘\ 7 Im l Corpa a(on. All rights reserved. Inlel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

e property of others. intel' Software . 37

Fo r more complete nfa ‘mation abou tcomple optimizations, see our Optimization Notice.

DASK (CON'T)

Extremely easy to integrate in places where NumPy* and SciPy*
already exist

Is a bit “heavier” of a solution than MPI, so use accordingly

Works best when tasks have little intercommunication between
workers

g © 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel) software . 38
For more complete information about compiler optimizations, see our Optimization Notice. (—

19

7/13/17

OTHER PYTHON-LEVEL ACCELERATORS

= Cython*
= Optimizing static compiler ‘ﬁ LJthOﬂ

= Similar syntax to Python
= (Can interact with NumPy* pretty well
= Supports calling C/C++ well
= Numba*
= Just-in-time (JIT) certain functions in Python

= Optimizes down to Low Level Virtual Machine
(LLVM) code

= Useful for code that can be instantiated once
and reused

© 20 ntel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
s and brands may

*Oth may be claimed as the property of others. intel' Software . 39

me:
For more complete information about compiler optimizations, see our Optimization Notice.

NUMBA

from numba import jit

= Accessed by using the
@)jit decorator ejit

def mandel(x, y, max_iters):

- .
May need SpeCIal Given the real and imaginary parts of a complex number,

1 1 1 termine if it i idate f hip in the M lbrot

Compllatlon Optlons to determine if it is a candidate for membership in e Mandelbro

) set given a fixed number of iterations.
get best out of it

= (Can cache the function :
with cache=True f

0
complex(x,y)
or i in range(max_iters):

Z = 2%z + C
if (z.realxz.real + z.imag*z.imag) >= 4:

= Access vectorization with return 1
@vectorization decorator return 255

Code snipit from the Numba documentation

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 40
otice.

For more complete information about compiler optimizations, see our Opt

20

7/13/17

CYTHON

= (Can statically compile native

def primes(int kmax):

code cdef int n, k, i
cdef int p[1000]
. . : el
= (Can utilize static typing for result =[] o
faster code L fmax = 1000
= Compiles to Cfiles D ok - kmaxs
. . i=0
= Can pre-compile and import while i < k and n & p[i] != 0:
Cython code/modules P
. . plk] = n
= Accessed with a package or via K=k + 1
. result.a nd(n)
the %%cython in Jupyter A
return result
notebooks

Code from the Cython documentation

its subsidiaries in the U.S. and/or other countries.

(intel) Software . 41

CAVEATS

From the Cython docs:

= “The general recommendation is that you should only try to compile
the critical paths in your code. If you have a piece of performance-
critical computational code amongst some higher-level code, you may
factor out the performance-critical code in a separate function and
compile the separate function with Numba. Letting Numba focus on
that small piece of performance-critical code has several advantages:

= jt reduces the risk of hitting unsupported features;
= jt reduces the compilation times;

= jtallows you to evolve the higher-level code which is outside of the
compiled function much easier.”

© 2017 Intel i el an a its subsidiaries in the U.S. and/or other countries.

*Other names an ro 3 i y
ontl (inteDsoftware | 42

For more complete

21

7/13/17

VECTORIZATION

= Special form of parallelism converted from an initial scalar form

* Hardware supported parallelism of SIMD which can greatly assist
numerical pipelines

= Main two components are numexpr* and the NumPy* that use
vectorization

= Intel® Distribution for Python* does this for you with changes to
NumPy*, SciPy*, Scikit-learn* etc.
= Qccasionally using the raw numexpr* might fit one's use case

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may

med as the property of others. intel' Software . 43

For more complete information about compiler optimizations, see our Optimization Notice.

NUMEXPR: THE NUMERICAL EVALUATOR

In [1]: import numpy as np

= Multi-core, multi-threaded
vectorization performance through In [21: inport numexpr as ne
Vector Math Library (VML), part of the
Intel® MKL In [4]: b = np.random. rand(1e6)

= Beston large array size calculations, 1 1 tineit 2+a + 30
and transcendent expressions 10 loops, best of 31 48.3 me per tace
In [6]: timeit ne.evaluate("2¥a + 3%b")
= Ca“.abl.e from the Python—level 100 loops, best of 3: 5.83 ms per loop # 3.2x: medi
= Great for making changes that could 1 m1: tineit 2¢a + bxs10

call down to vectorization code 10 toops, best of 3: 138 ms per Lo
WIthOUt mOV|ng One’s Code to C++ In [8]: timeit ne.evaluate("2%a + b*x10")

100 loops, best of 3: 7.59 ms per loop # 20x: large
level

5]

[3]: a = np.random.rand(1e6)

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 44

For more complete information about compiler optimizations, see our Optimization Notice.

22

7/13/17

NUMEXPR (CON'T)

= Easy to intermix with
NumPy* and SciPy*
code

= Requires that you
understand the
numerical implications
of your code

= This was one of the
methods we
accelerated NumPy*
and SciPy* in our
optimized IDP Package

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names an n ay imed as the property of others
For more complete information about compiler optimizations, see our

>>> import numpy as np
>>> import numexpr as ne

>>> a
>>> b

= np.arange(1e6) # Choose large arrays for better speedups
= np.arange(1e6)

>>> ne.evaluate("a + 1") # a simple expression

array([1.00000000e+00, 2.0 +00, 3o +00, ...,
9.99998000e+05, 9.99999000e+05, 1.00000000e+06])

>>> ne.evaluate('axb-4.1xa > 2.5%b') # a more complex one
array([False, False, False, ..., True, True, Truel, dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)") # you can also use functions
array([NaN, 1.72284457, 1.79067101, ..., 1.09567006,
0.17523598, -0.09597844])

>>> s = np.array(['abba', 'abbb', 'abbcdef'])
>>> ne.evaluate("'abba' == s") # string arrays are supported too
array([True, False, Falsel, dtype=bool)

(intel) Software . 45

Optimization Notice.

changes

balance pointis

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Opt

PARALLELISM AND OTHER TOOLS: USAGE DETAILS

= C(Clearly understand one's workload and algorithms before
implementing anything with these tools

= Profile one's code to more accurately understand where to make code

= Try different strategies and mixes of optimization to see where

= Documentation is you friend: many of these technologies have lots of
gotchas and implementation quirks

intel' Software . 46

23

7/13/17

Software

OPTIMIZING THE BLACK SCHOLES™
ALGORITHM

THE BLACK SCHOLES™ ALGORITHM

= Afinancial options trading formula used for investment price
estimates

= The formula calculates the price of a European ‘put’and ‘call’ options

= |s a partial differential equation (PDE) which describes the price of the
option over time

= |s agreat example of some of the optimization problems that exist in
real-world

are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

imization Notice. intel' Software . 48

24

7/13/17

BLACK-SCHOLES* [CON'T)

= Algorithmisa PDEin
general form

= Solvable for Call and Put
options

= Goal is to solve for Call
and Put options

= Puttingitinto Python is
next step

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

For more complete information about compiler optimizations, see our Optimization Notice.

v 1 ,.,0°V v B
‘E"*‘EO'S@'-*—TS% TV—O

C(S;,t) = N(dy)S; — N(dp)Ke 7T

A= () () e
— () 4+ (r+) (Tt
oVT —t [(K 2 ()
dy=dy —oyT—1
The price of a corresponding put option based on put-call parity is:
P(S;,t) = Ke "TY — 8, + C(S:,t)
= N(—dy)Ke "™ — N(—dy)S;

=or both, as above:

dy =

« N(-) is the cumulative distribution function of the standard normal distribution

« T — tis the time to maturity (expressed in years)

« S; is the spot price of the underlying asset

« K is the strike price

« ris the risk free rate (annual rate, expressed in terms of continuous compounding)
« o is the volatility of returns of the underlying asset

(intel) Software . 49

BLACK-SCHOLES™ (CON'T)

= Code generates the
intermediates of the formula,
and gives the corresponding
call/put

= Generates for as many
options that exist (nopt)

= Calculates final call/put at the
last two lines

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

For more complete information about compiler optimizations, see our Optimization Notice.

from math import log, sqrt, exp, erf
import numpy as np
invsqrt = lambda x: 1.0/sqrt(x)
def black scholes (nopt, price, strike, t, rate, vol, call, put)
mr = -rate
sig_sig _two = vol * vol * 2

for i in range(nopt):

P = float(price [1])
S = strike [1i]
T =t [i]
a = log(P / S)
b=T%*mr
z = T * sig_sig_two
c=0.25*z

= invsqrt(z)
wl=(a-b+c)*y
w2 = (a-b-c)*y
dl = 0.5 + 0.5 » erf(wl)
d2 = 0.5 + 0.5 * erf(w2)
Se = exp(b) * S

call [i] = P * dl - Se * d2
put [i] = call [i] - P + Se

(intel) software .

50

25

7/13/17

BLACK SCHOLES™ INITIAL ANALYSIS

= Where do you think the problems are in the code?
= What methods are you going to use to hunt them down?
= How much of this code is using performance libraries?

= Exercise: Come up with a game plan
*= Codeis at:

= Orjust search Github for “ep2017_tutorial_tune_performance”

intel' Software . 51

BLACK SCHOLES* INITIAL ANALYSIS (SETUP)

= You'll need:
= cProfile (included)
= Line_profiler (conda install line_profiler)
= Numexpr
= Numba
= Dask
= Cython
= Jupyter and Jupyter notebook
= QOptional:
= VTune Amplifier2017 XE or later

Z#” " © 2017 Intel Corporation. All rights reserved. Intel and the Inf

intel' Software . 52

26

7/13/17

BLACK SCHOLES™ INITIAL ANALYSIS

= What did you find?
= How did cProfile help?
= What did line_profiler do?

= Notes about profiling:
= cProfile:

= use the import cProfile command, then cProfile.run(‘command’)
= Line_profiler:

= use “%load_ext line_profiler” in Jupyter

= %lprun -f function function(args)

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software .

For more complete information about compiler optimizations, see our Optimization Notice.

53

BLACK SCHOLES* INITIAL ANALYSIS (CPROFILE)

Fri Jun 16 15:58:01 2017 restats
60004 function calls in 0.039 seconds
Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
10000 0.003 0.000 0.004 0.000 <ipython-input-48-2d252d67ac99>:3(<lambda>)

1 0.026 0.026 0.039 0.039 <ipython-input-48-2d252d67ac99>:5(black_scholes)
1 0.000 0.000 0.039 0.039 <string>:1(<module>)
1 0.000 0.000 0.039 0.039 {built-in method builtins.exec}
20000 0.006 0.000 0.006 0.000 {built-in method math.erf}
10000 0.001 0.000 0.001 0.000 {built-in method math.exp}
10000 0.001 0.000 0.001 0.000 {built-in method math.log}
10000 0.001 0.000 0.001 0.000 {built-in method math.sqrt}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software .

For more complete information about compiler optimizations, see our Optimization Notice.

54

27

7/13/17

(: E;l: (] E; !; s; [- (]]
Timer unit: le-06 s
Total time: 0.186871 s
File: <ipython-input-13-2d252d67ac99>
Function: black_scholes at line 5
Line # Hits Time Per Hit % Time Line Contents
5 def black scholes (nopt, price, strike, t, rate, vol, call, put):
6 1 2 2.0 0.0 mr = -rate
7 1 2 2.0 0.0 sig_sig_two = vol * vol * 2
8
9 10001 8906 0.9 4.8 for i in range(nopt):
10 10000 11370 1.1 6.1 P = float(price [i])
11 10000 9257 0.9 5.0 S strike [i]
12 10000 9262 0.9 5.0 T =t [i]
13
14 10000 11753 1.2 6.3 a = log(P / S)
15 10000 10216 1.0 5.5 b=T%*mr
16
17 10000 10405 1.0 5.6 z =T * sig_sig_two
18 10000 10443 1.0 5.6 c =0.25 * z
19 10000 15951 1.6 8.5 y = invsqgrt(z)
20
21 10000 13279 1.3 7.1 wl=(a-b+c)*y
22 10000 12288 1.2 6.6 w2 =(a-b-c)*y
23
24 10000 13464 1.3 7.2 dl = 0.5 + 0.5 * erf(wl)
25 10000 13741 1.4 7.4 d2 = 0.5 + 0.5 * erf(w2)
26
27 10000 11917 1.2 6.4 se = exp(b) * S
28
29 10000 12540 1.3 6.7 call [i] = P * dl - Se * d2
30 10000 12075 1.2 6.5 put [i] = call [i] - P + Se

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. (intel) software . 55
For more complete information about compiler optimizations, see our Optimization Notice.

home/bigboss/intel/ampixe/projects/ep2017_tutorial - Intel VTune Amplifier
—e B B2 PP O O [Wkme X

i /nome/bigboss/intel/amplxe/projects

> @ container_tests

> @o_benchmark

> @oungeon

> @ wisc_Tests

> @ webinar

? Getting Started
% Discover Performance Snapshots

Current project: ep2017_tutorial

b Basic Hotspots Analysis £1 New Project..

P Locks and Waits Analysis £7 Open Project.

b Memory Consumption Analysis & Open Result

P Basic Hotspots 1 Analysis

b New Analysis..

8 Import Result..

£ Configure Project.

Recent Projects: Recent Results:

> Dungeon > bs_dask [ep2017 _tutorial]

> Misc_Tests > bs_numexpr [ep2017_tutorial]
> Webinar > bs_numpy [ep2017_tutorial]
> D_benchmark

*Other names and brands may be claimed as the property of others. (inte . 56

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. »
b . tel) software
For more complete information about compiler optimizations, see our Optimization Notice.

28

7/13/17

ONE FORM OF OPTIMIZATION: NUMPY*-SPECIFIC MATH CALLS

= Exercise: In this example, replace the functions from the math library
with NumPy* equivalents:

* log
" exp
= erf
= invsqrt
= Re-run the profiling to see what you can find
= Total time?
= A change in what the bottlenecks were?

(intel) Software . 57

BLACK SCHOLES™: NUMPY VARIANT

= Test out changes with NumPy* to the Naive implementation of Black
Scholes*

= Test with same methods: timeit, cProfile, line_profiler
= What works? What doesn't work?

intel' Software . 58

29

7/13/17

BLACK SCHOLES™: NUMPY VARIANT (VECTORIZED)

= Test out changes with NumPy* to the vectorized implementation of
Black Scholes*

= Test with same methods: timeit, cProfile, line_profiler
= What works? What doesn't work?

intel' Software . 59

BLACK SCHOLES*: NUMPY* VARIANT (VECTORIZED)

= Loop removal helps by allowing use of NumPy's native array
capabilities

= [ndividually going through loops, even with NumPy* arrays is VERY
expensive

* Loop-parallel has a few options, and this is one of them: vectorization!

= On line_profiler, how many times did the code hits changes in this
new version?

(inteD software | 60

30

7/13/17

VTUNE ANALYSIS OF BLACK SCHOLES™ WITH NUMPY*

/home /bigboss/intel/amplxe/projects/ep2017_tutorial - Intel VTune Amplifier

Jhome/bigboss/intel/amplxe/projects/ep2017_tutorial - ntel VTune Amplifier
— B 2 DB DS O weone |bumve X
Hotspots by CPU Usage viewpoint (change) © INTELVTUNE AMPLIFIER 201

 Elcollectiontog @ Analysis Target A AnalysisType & Summary | @ Bottomup & Caller/Callee @ Top-downTree ' Platform b bs_naivepy >

> @ container tests
> @o_benchmark

> @oungeon

* @ Misc_Tests.

> @uiebinar

* @ ep2017_tutorial

Top Hotspots
i section s the.

n your appicaton funcions typicay

woate

math epynon 35mx

CEEEEEERIE)

CPU Usage Histogram
s

a00ms.

TargetUntzaton

sams
200ms.

100ms

ot schles_scrpt_versonsibs_naive py

2017 Intel Corporation. All rigl :
ther names and brands may b erty of other: (int 1) Softwa

For more complete informatiof ut compiler opti

BLACK SCHOLES™: NUMEXPR™

= Exercise: Modify the Black Scholes* algorithm to utilize numexpr*, and
re-run the same tests

= Test with same methods: timeit, cProfile, line_profiler
= What works? What doesn't work?

= What about the condensed version? How well does that work?

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . (Y

For more complete information about compiler optimizations, see our Optimization Notice.

31

7/13/17

BLACK SCHOLES™: NUMEXPR*

= By interacting directly with numexpr*, you are calling out to the
vectorization capabilities without going through the NumPy* layer

= By compressing the entire vectorization command of one’s calculation
in one expression, the vectorization engine can do significantly more

= This is one of the ways we did some of our optimization work on
NumPy* itself for the Intel® Distribution for Python*!

INTELVTUNE AMPLIFIER Zﬂi}
v

32

7/13/17

BLACK SCHOLES™: NUMBA*

= Exercise: Using the Numba example, test with same methods: timeit,
cProfile, line_profiler

= What do you notice about the functions being imported?
= Why do you think it uses the “nopython=True” option?
= What works? What doesn’'t work?

intel' Software . 65

BLACK SCHOLES*: NUMBA* (VARIANT 2)

= What is different in this example? What does it change?

= Using the Numba example, test with same methods: timeit, cProfile,
line_profiler

= What works? What doesn’t work?

(inteD software | 66

33

7/13/17

BLACK SCHOLES™; NUMBA* (VARIANT 3)

= What is different in this example? What does it change?

= Using the Numba example, test with same methods: timeit, cProfile,
line_profiler

= What works? What doesn’t work?

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

g ntel) software . 6
For more complete information about compiler optimizations, see our Optimization Notic

Thome/bigboss/intel/amplxe/projects/ep2017_tutorial - Intel VTune Amplifier

/home/bigboss/intel/amplxe/projects/ep2017 tutorial - Intel Vune Amplifier
R BB b S BF @ whone |boabe | bounoy | BRGS0
I8 /home/bigboss/intel/amplxe/projects

» @ cont: tests @ Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©

> @D benchmark Bl CollctionLog Analysis Target A Analysis Type | & summary @ Bottomup. @ Calle/Callee & TopdownTree (s Platform

" Boierens Elapsea Time : 06615

> @webinar oss0s

" @ep2017_tutoriat
% bs numpy
o Top Hotspots

e aynamic so
e aynamic so
mulara.cpython-36m.185_Gi-inurgnu so
ihe aynamic so

CPU Usage Histogram

Eapseatie

Simulanaously ilzod Logeal CPUS

Collection and Platform Info
s cotecton,

tora_ e, scholos_scipversionsibs_numergey
ount 5_UIKE =debian PRETTY NAME="Utura 1604 LTS" VERSION ID="16.0¢"
*BUG REPORT URL- VERSION, CODENAME-xerial

Opecatng System 48051 genenc NAME="Uturt” VERSION="16,04.2 LTS (Xenial Xens)' ID=
HOME DL SUPRORT URL-"

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

<) (inteD software | 68
For more complete information about compiler optimizations, see our Optimization Notice.

34

7/13/17

BLACK SCHOLES™: NUMBA*

= This example uses Just-In-Time(JIT) compiling to achieve
performance gains

= Because of this, profiling can become VERY difficult

= The first run is slow because you pay for the compilation time, but the
function is cached afterwards

= Many times this require writing in pure Python before utilizing Numba

its subsidiaries in the U.S. and/or other countries.

(intel) Software . 69

BLACK SCHOLES™: DASK*

= Exercise: What is different in this example? What does it change?

= Using this example, test with same methods: timeit, cProfile,
line_profiler

= What works? What doesn’t work?

© 2017 Intel iy el and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Oth of oth

intel' Software . 70

35

7/13/17

BLACK SCHOLES™; DASK* [NUMPY* MODS)

= What is different in this example? What does it change?

= Using this example, test with same methods: timeit, cProfile,
line_profiler

= How does the diagnostic server help?
= What works? What doesn't work?

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notic

(intel' Software

/home/bigboss/intel/amplxe/projects/ep2017_tutorial - Intel Vune Amplifier

Froee vt
s /home/bigboss/intel/amplxe/projects

@
Cl
=
B
]
[
3]
*

B@a bSO bs_numpy
@ Basic Hotspots Hotspots by CPU Usage viewpoint (change) @
[collectionLog © Analysis Target A Analysis Type i “mimary @ Bottomup @ Caller/Callee @ Top-downTree - Platform

welcone | bsnaive b numerpr|[BELURBSN X =

> @ continer_tests
* @0 _benchmark

Elapsed Time : 1.357s
* @ep2017_tutorial
% bs_numpy
== Top Hotspots

Function cPuTIme
{Unknoun stack tame(e]
emp e aynanic so

1o _etypes cpython 35m 196_54 i 50

CPU Usage Histogram

2000ms

a0oms

Tagat Unzston

a00ms

s00ms

200ms

oms

‘Simutaneously Usizea Lol CoUs

Collection and Platform Info
o

?_utoral_une. schos_scrpt_vorsonsbs_numba,
 NAME="Upunta” VERSION="16 04.2 LTS (fenia Xars) ID=uburty 1D_UIKE=getian PRETTY _NAME="Uuris 16,042 T5" VERSION, 1D="16.04
L i DU o™ SUPPORT, URLE"p ol 1 comi” BL REPORT_URLE-15:50g5 uncpad et o™ VERSION. CODENAME=xerial

Operatng Sysem:

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

(intel) software

l

72

36

7/13/17

BLACK SCHOLES™: CYTHON*

= Exercise: What is different in this example? What does it change?

= Take alook at the .pyx file provided, then follow the instructions to
build the Cython* model

= |f you have the Intel® Compiler (icc), the resultant code will be MUCH
faster; gcc does not do very good vectorization!

= Using this example, test with same methods: timeit, cProfile,
line_profiler

its subsidiaries in the U.S. and/or other countries.

intel' Software . 73

BLACK SCHOLES™: CYTHON

= Cython*is another method of getting performance closer to C that
has similar syntax to Python

= Essentially applies some of the rigidity of C to Python in trade for
better performance

= Some annoyances on occasion about importing the code, makes
testing the code in production a bit difficult (as well as deployment)

= Best performance is achieved with use of a performance compiler,
such asicc.

its subsidiaries in the U.S. and/or other countries.

intel' Software . 74

37

7/13/17

VTUNE ANALYSIS OF BLACK SCHOLES™ WITH CYTHON*

Froect Navigator

932PM %

8 Bz b B O @ Wi X
8 /home/bigboss/intel/amplxe/projects

> @ Container_tests
> @0 benchmark
> @oungeon
> @ misc_Tests
> @ webinar
v @epz

& r0oths
> @ ep2017_tutorial

? Getting Started
 Discover Performance Snapshots

formance Profiler
bigboss@thebigshell: ~/Code/ep2017_tutorial_tune_performance

ototypes -finf.
AVXS12 -qopennp
tb/pythons. s

gboss/niniconda:
. Linux-x86_64
optintzation reparts a

ag
raing d
P

e ning NPY_NO_DEPR

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

For more complete information about compiler optimizations, see our Optim tice

(intel) Softwar

[Nome/blgboss/intel/amplxe/projects/ep2017_tutorial - Intel VIune Amplifier

o=@ 3) oum &
©© @ /home/bigboss/intel/amplxe/projects/ep2017_tutorial - Intel VTune Amplifier
Protec Navosar

EEIDEEER

s /home/bigboss/intel/amplxe/projects
> @ container_tests
> @0_benchmark
> @oungeon
> @ Misc_Tests
> @webinsr
w2
* @ ep2017_tutoral

a
ra

© Getting Started
 Discover Performance Snapshots

Current project: ep2017_tutorial

b Memory Consumtion Analysis £ New Project.
b Basic Hotspots Analysis
b Locks and Waits Analysis
b Basic Hotspots 1 Analysis
® New Analysis...

B Import Result.
 Configure Project

£7 Open Project.
& Open Result

Recent Project: Recent Result:

> ep2 > bs_mem_naive [ep2017_tutorial]
> Dungeon > bs_naive [p2017_tutorial]

> Misc_Tests > r002hs [ep2]

> Webinar

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

For more complete information about compiler optimizations, see our O

Imization Notice. lntel Software

38

7/13/17

BLACK SCHOLES™: A SUMMARY

= With these examples, a proper strategy and methodical testing w/
tools can properly accelerate one’s code properly

= Understanding which technologies are good for what purposes can
help with selecting the best optimization technique for one's code

= Use of proper code profilers for the job can also help significantly

= Advanced profilers such as VTune can reveal much more about how a
problem should be optimized (and what tools to use)

= Remember that parallelism is something that takes much effort to
achieve, but the benefits can be tremendous

its subsidiaries in the U.S. and/or other countries.

(intel) Software . 77

BLACK SCHOLES™ BENCHMARKS

Black Scholes algorithm on i5 processors (2017 Update 2)

Performance Speedups for Intel® Distribution for Python* for Black Scholes* Formula on Intel® Core™ i5
Processor (Higher is Better)

M pip/numpy M Intel Python

25
20
15
10
5
0

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

Options/sec

Size: Number of Options

are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

intel' Software . 78

imization Notice.

39

7/13/17

BLACK SCHOLES™ BENCHMARKS

Black Scholes algorithm on Xeon processors (2017 Update 2)
Performance Speedups for Intel® Distribution for Python* for Black Scholes* Formula on Intel®
Xeon™ Processors (Higher is Better)

Epip/numpy mIntel Python
180

160

140

1§Oa.ua.n.ul.””.”]

0
1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

o

Options/sec
()]
o o o

N
o

Size: Number of options

2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
d

*Other nar brands may be claimed as the property of others. intel' Software . 79

For more complete information about compiler optimizations, see our Optir

BLACK SCHOLES™ BENCHMARKS

Black Scholes algorithm on Xeon Phi processors (2017 Update 2}

Performance Speedups for Intel® Distribution for Python* for Black Scholes* Formula on Intel® Xeon
Phi™ Product Family (Higher is Better)

M pip/numpy M Intel Python
300
250
200
o
3 150
S~
"
c
o
S 100
o
o
) J
[— R RN R R R R | _- J
1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

Size: Number of options

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be d as the property of others. intel' Software . 80

For more ¢ information about compiler optimizations, see our Optimization Notice.

40

7/13/17

CONFIGURATION INFORMATION

Software

* Pip*/NumPy*: Installed with Pip, Ubuntu*, Python* 3.5.2, NumPy=1.12.1, scikit-learn*=0.18.1
* Windows*, Python 3.5.2, Pip/NumPy=1.12.1, scikit-learn=0.18.1
* Intel® Distribution for Python 2017, Update 2

Hardware

* Intel® Core™i5-4300M processor @ 2.60 GHz 2.59 GHz, (1 socket, 2 cores, 2 threads per core), 8GB DRAM

* Intel® Xeon® E5-2698 v3 processor @ 2.30 GHz (2 sockets, 16 cores each, 1 thread per core), 64GB of DRAM

* Intel® Xeon Phi™ processor 7210 @ 1.30 GHz (1 socket, 64 cores, 4 threads per core), DRAM 32 GB, MCDRAM (Flat
mode enabled) 16GB

Modifications

» Scikit-learn: conda installed NumPy with Intel® Math Kernel Library (Intel® MKL) on Windows (pip install scipy on
Windows contains Intel® MKL dependency)
» Black Scholes* on Intel Core i5 processor/Windows: Pip installed NumPy and conda installed SciPy

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names an nds ma

med as the property of others. intel' Software . 81

For more complete information about compiler optimizations, see our Optimization Notice.

HOW WERE THESE OPTIMIZATIONS DONE?

= Many of the changes initially leverage research on NumPy*
vectorization code

= Changes were made at the numexpr* level (such as the ones that were
shown), in NumPy's source

= Additional changes were done at the C level with the Intel MKL

= Notice that even with these changes that should help the stock pip
version, it does not scale very well

= Advanced vectorization through AVX 2.0 and AVX512 really help the
algorithm scale out on hardware

*Other names and brands may be claimed as the property of others. intel' Software . 82
o) otice.

For more complete information about compiler optimizations, see our Opi

41

7/13/17

BLACK SCHOLES EXAMPLE REFERENCES

= Multiprocessing, MPI Variants

© 2017 Intel Corporation. Al rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

COLLABORATIVE FILTERING EXAMPLE

(intel) Software . 83

Software

42

7/13/17

. - L 2N =R
= Exercise: o!ot|m_|ze. 1k [® || & NP I
Collaborative filtering 2] (&[w|w 2 & ||
= Collaborative filtering is L | | ¥ || | ¥
used by recommender 2% | 2% |&
systems. -~ LG ?| ¢
= Uses dot product/cosine 2 e =),
. . . simil(z,y) =
similarity to generate o JE T S
SI m I I.a rlty Cal.CU I.atlo n where lyy is the set of items rated by both user x and user y.
(m emo ry_ base d) The cosine-based approach defines the cosine-similarity between two users x and y as:4!
oo ; T2,iTyi
simil(z, y) = cos(Z,y) = ||4Hz i gir = il
Z|| x ||4]| /-21: . /g}; =3

intel' Software .

COLLABORATIVE FILTERING EXAMPLE: METHODS

= Similar to Black Scholes*, utilize timeit, cProfile, line_profiler to
determine how the algorithms perform and what can be seen

= Several examples to demonstrate parallelism methods:
= NumPy*
= Dask*

= Numba*
= NumPy*+Numba*
= Dask*+Numba*

43

7/13/17

COLLABORATIVE FILTERING EXAMPLE: ANALYSIS

= What can you see about the example?

= How do the different variants fair against each other?
= How do the composable variants compare?

= Why do you think the composable variants work well?
= What method(s) would you use?

intel' Software . 87

COLLABORATIVE FILTERING REFERENCES

44

7/13/17

CODE PROFILING EXAMPLES SUMMARY

= Profiling code as a starting point helps guide what methods one
decides to look for optimization

= Developing one’s ability to see inherent parallelism, and composable
parallelism levels can help as one develops future codebases

= Use of the correct profiler for the job will help validate one’s changes
to performance code

= Knowledge and increased usage of performance
libraries+vectorization will ensure one’s tuning efforts are realized

= Parallelism is a diverse space; lots of things happening in the Python
world!

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands m. hers.

ay be claimed as the property of ol intel' Software . 89
tice.

Software

NEXT UP: PYCOMPSS FROM BARCELONA
SUPERCOMPUTING CENTER

45

7/13/17

ADDITIONAL INFORMATION

= Intel® Distribution for Python* Documentation
= 2018 Beta information:
= cProfile:

Line profiler:

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others. intel' Software . 91

For more complete information about compiler optimizations, see our Optimization Notice.

LEGAL DISCLAIMER & OPTIMIZATION NOTICE

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES
NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operatlons and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

For more complete information about compiler optimizations, see our Optimization Notice at

Copyright © 2017, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel
Cohrporat|on in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

L i ¢ 1N (inteD softvare | 92
For more complete information about compiler optimizations, see our Optimization Notice.

46

7/13/17

