
7/13/17

1

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

A Hands-On approach to
Tuning Python Applications
for Performance
David Liu, Python Technical Consultant Engineer (Intel)
Dr. Javier Conejero, Barcelona Supercomputing Center

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Overview

§ Introduction & Tools of the Trade for optimizing Python performance
§ Native Performance libraries
§ Performance profilers
§ Parallelism tools and other accelerators
§ Hands-on activity: Optimizing Black Scholes algorithm
§ Hands-on activity: Collaborative Filtering example
§ Real world Application example: PyCOMPSs from Barcelona

Supercomputing Center
§ Summary

2

7/13/17

2

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Performance Introduction

§ How does one obtain addition performance on one’s Python code?
§ What tools are available to diagnose these issues?
§ What types of issues are we looking for?
§ What types of fixes are available?

3

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Performance Introduction (Con’t)

§ How does one obtain addition performance on one’s Python code?
§ Through better usage of correct data structures for a given

problem
§ By leveraging the base language’s strengths to full advantage
§ By refactoring one’s code where inefficiencies are present
§ By moving parts of code to a more native performance library
§ By using specialized tools that get closer to C or JIT the code
§ By leveraging specialized frameworks that are made for

accelerated tasks

4

7/13/17

3

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Performance Introduction (Con’t)

§ What tools are available to diagnose these issues?
§ Code profilers

§ Code, Memory, Vectorization
§ cProfile, Perf, line_profiler, Intel® VTune ™
§ Memory_profiler, Intel Vtune ™
§ Intel® Advisor, Intel® Inspector

§ Analyzers
§ For MPI and similar messaging protocols

§ Intel® Trace Analyzer and Collector
§ System profilers

§ Full system, OS-level
§ Linux: sysprof

5

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Performance Introduction (Con’t)

§ What types of issues are we looking for?
§ Improper loop structure
§ Penalty for misuse of a data structure (dict when it should be a list,

list when it should be a tuple, etc.)
§ Syntax and coding mistakes
§ Python language bottlenecks
§ Vectorization
§ Tasks ill-fitted for Python that should be in translated to C++

6

7/13/17

4

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Performance Introduction (Con’t)

§ What types of fixes are available?
§ Syntax and Code fixes at the Python level
§ Syntax and Code fixes at the C++ level
§ Migration of code to the C++ level
§ Refactoring with specialized frameworks
§ Syntax and Code fixes at the Messaging protocol level
§ Refactoring to utilize a distributed framework

7

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Native Performance Libraries

7/13/17

5

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Native Performance Libraries offered by Intel

strategy
provides

the
foundation
for success

using AI

Intel® Math Kernel
Library (Intel® MKL

& MKL-DNN)

Intel® Data Analytics
Acceleration Library

(Intel® DAAL)

+Network
+Memory
+StorageDatacenter Endpoint

Solutions
for reference across industries

Tools/Platforms
to accelerate deployment

Optimized Frameworks
to simplify development

Libraries/Languages
featuring optimized building blocks

Hardware Technology
portfolio that is broad and cross-

compatible

Intel® Deep Learning SDK
for Training &
Deployment

Intel®
Distribution
for Python*

Intel® Integrated
Performance

Primitives
(Intel® IPP)

9

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Native Performance Libraries (Con’t)

§ Languages:
§ Intel® Distribution for Python*

§ Other performance libraries and tools
§ Cython*
§ Numba*
§ Numexpr*
§ NumPy*

10

7/13/17

6

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Native Performance Libraries (Con’t)

§ Numerical and Performance Libraries:
§ Intel® Math Kernel Library (Intel® MKL & MKL-DNN)
§ Intel® Integrated Performance Primitives (Intel® IPP)
§ Intel® Data Analytics Acceleration Library (Intel® DAAL)
§ Intel® C++ Compiler
§ Intel® Threading Building Blocks
§ Intel® MPI Library

11

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Native Performance Libraries (Con’t)

§ Native Libraries help utilize functions with best vectorization available
for given hardware

§ If one’s code or parts of the package are in C++, usage of an Intel® MKL
variant can provide multiplication factors of performance over the
stock OpenBLAS implementation

§ Placement of certain algorithms in one’s code for data analysis can be
refactored to be called with Intel® DAAL

§ Hardware accelerated MPI with Intel® MPI
§ Use the Intel® Distribution for Python* as a starting point

12

7/13/17

7

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

From Single Core, to Multicore, to Many Core

§ Purpose of libraries
is to help scaling of
code over various
types of hardware

§ These are some of
the ways we’ve
accelerated
NumPy*/SciPy*
/Scikit-learn*

13

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® Math Kernel Library (MKL)

§ Features highly optimized, threaded, and vectorized math
functions that maximize performance on each processor family

§ Utilizes industry-standard C and Fortran APIs for compatibility
with popular BLAS, LAPACK, and FFTW functions—no code
changes required

§ Dispatches optimized code for each processor automatically
without the need to branch code

§ One of the main performance libraries when making numerical
optimizations in one’s code (mostly at the C/C++ level)

§ Is used directly in the optimized NumPy*/SciPy* for The Intel®
Distribution for Python*

14

7/13/17

8

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® Data Analytics Acceleration Library (Intel® DAAL)

§ Features highly tuned functions for deep learning, classical machine
learning, and data analytics performance across spectrum of Intel®
architecture devices

§ Optimizes data ingestion together with algorithmic computation for
highest analytics throughput

§ Includes Python* (PyDAAL), C++, and Java* APIs and connectors to
popular data sources including Spark* and Hadoop*

15

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® DAAL: Heterogeneous Analytics
§ Targets both data centers (Intel® Xeon® and Intel® Xeon Phi™) and edge-devices (Intel®

Atom™)
§ Perform analysis close to data source (sensor/client/server) to optimize response

latency, decrease network bandwidth utilization, and maximize security
§ Offload data to server/cluster for complex and large-scale analytics

(De-)Compression
(De-)Serialization

PCA
Statistical moments
Quantiles
Variance matrix
QR, SVD, Cholesky
Apriori
Outlier detection

Regression
• Linear
• Ridge

Classification
• Naïve Bayes
• SVM
• Classifier boosting
• kNN
• Decision Trees

Clustering
• Kmeans
• EM GMM

Collaborative filtering
• ALS

Neural Networks

Pre-processing Transformation Analysis Modeling Decision Making

Sc
ie
nt
ifi
c/
En

gi
ne

er
in
g

W
eb

/S
oc
ia
l

Bu
sin

es
s

Validation

Available also in open source:
https://software.intel.com/en-us/articles/opendaal

16

7/13/17

9

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® Distribution for Python* 2017
Advancing Python performance closer to native speeds

•Prebuilt & optimized for numerical computing, HPC, data analytics
•Drop in replacement for your existing Python. No code changes required
•Jupyter* Notebooks, Matplotlib* included
•Compatible with and powered by Anaconda, supports conda and pip

Easy, out-of-the-box
access to high

performance Python

•Accelerated NumPy*/SciPy*/Scikit-Learn* with Intel® MKL and Intel® DAAL
•Data analytics with Scikit-learn*, pyDAAL, Caffe*, Theano*
•Numba* and Cython* included for tuning hotspots to scale
•Comes with MPI4Py, works with Dask* and PySpark*

High performance with
multiple optimization

techniques

• Distribution and individual optimized packages available through
conda and Anaconda Cloud: anaconda.org/intel

• Optimizations upstreamed back to main Python trunk

Faster access to latest
optimizations for Intel

architecture

17

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Installing Intel® Distribution for Python* 2017
Stand-alone installer and anaconda.org/intel

OR

Linux* Windows*

macOS*

Download full installer from
https://software.intel.com/en-us/intel-distribution-for-python

> conda config --add channels intel
> conda install intelpython3_core
> conda install intelpython3_full

docker pull intelpython/intelpython3_full

18

Apt/Yum
also
available

7/13/17

10

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Performance Profilers

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Python Profilers

§ Profiling one’s code is the initial step of investigation for performance
tuning

§ Many options exist to get large and small granularity insights to one’s
code

§ All profilers have certain characteristics that one need to take into
account—using the one that best suits the nature of one’s workflow is
best

§ Insights from profiling lead to direction of optimizations to follow, or
possible refactoring path

20

7/13/17

11

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Tool Description Platforms Profile	level Avg.	overhead	*

Intel®	VTune™	
Amplifier

• Rich	GUI	viewer
• Mixed	C/C++/Python	code

Windows
Linux

Line ~1.1-1.6x

cProfile	(built-in) • Text	interactive	mode:	“pstats”	
(built-in)

• GUI	viewer:	RunSnakeRun	(Open	
Source)

• PyCharm

Any Function 1.3x-5x

Python	Tools	 • Visual	Studio	(2010+)
• Open Source

Windows Function ~2x

line_profiler
(package)

• Pure	Python
• Open	Source
• Text-only	viewer

Any Line Up	to
10x	or	more

VMProf • Mixed	C++/Python mode
• CPython and	PyPy
• Open	Source

Linux,	limited
Windows	(32-bit)

Line N/A

21

Short overview of Python profilers

*	Measured	against	Grand	Unified	Python	Benchmark

Machine	specs:	HP	EliteBook 850	G1;	Intel®	Core™	i5-4300U	@1.90	Ghz (4	cores	with	HT	on)	CPU;	16	GB	RAM;	Windows	8.1	x86_64

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

CPROFILE and line_profilier

§ CProfile is C extension variant of profile (all Python), has decent
overhead for usage

§ Line_profiler has a much deeper granularity at much higher price
§ Easy to instantiate from REPL and Jupyter Notebooks
§ Function level vs line-level will depend on what type of Python code is

being profiled—single function? Full Program?
§ From top level, even simple %timeit or timeit might be good enough
§ Continuum’s accelerate module has a bokeh visualization of cProfile if

needed

22

7/13/17

12

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Intel® Vtune ™ Amplifier

§ Profile one’s source code to check for hotspots, measure utilization
§ Determine optimal vectorization for Intel® processors (C/C++)
§ Take advantage of non-uniform memory architectures and cache

(C/C++)
§ Helps one’s code translate from multi-core to many-core systems,

such as Xeon Phi™
§ Determine IO and CPU-bound behaviors
§ Useful even if one’s code is non-numerical (such as Django, Buildbot,

etc.)

23

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

import math
cdef class SlowpokeCore:

cdef public object N
def __init__(self, N):

self.N = N

cdef double doWork(self, int N) except *:
cdef int i, j, k
cdef double res
res = 0
for j in range(N):

k = 0
for i in range(N):

k += 1
res += k

return math.log(res)

def __str__(self):
return 'SlowpokeCore: %f' % self.doWork(self.N)

24

Mixed C/Python example to profile: core.pyx (Cython-based)

7/13/17

13

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 25

Mixed C/Python example to profile: main.py
from slowpoke import SlowpokeCore
import logging
import time

def makeParams():
 objects = tuple(SlowpokeCore(50000) for _ in xrange(50))
 template = ''.join('{%d}' % i for i in xrange(len(objects)))
 return template, objects

def calc_pi():
 # removed for readability; pure-Python function was here

def doLog():
 template, objects = makeParams()
 for _ in xrange(1000):
 calc_pi()
 logging.info(template.format(*objects))

def main():
 logging.basicConfig()
 start = time.time()
 doLog()
 stop = time.time()
 print('run took: %.3f' % (stop - start))

if __name__ == '__main__':
 main()
	

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 26

Intel® VTune™ Amplifier example

Machine	specs:	HP	EliteBook 850	G1;	Intel®	Core™	i5-4300U	@1.90	Ghz (4	cores	with	HT	on)	CPU;	16	GB	RAM;	
Windows	8.1	x86_64

7/13/17

14

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 27

Intel® VTune™ Amplifier – source view (main.py)

Machine	specs:	HP	EliteBook 850	G1;	Intel®	Core™	i5-4300U	@1.90	Ghz (4	cores	with	HT	on)	CPU;	16	GB	RAM;	
Windows	8.1	x86_64

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice. 28

Intel® VTune™ Amplifier – source view (core.c)

Machine	specs:	HP	EliteBook 850	G1;	Intel®	Core™	i5-4300U	@1.90	Ghz (4	cores	with	HT	on)	CPU;	16	GB	RAM;	
Windows	8.1	x86_64

7/13/17

15

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune EXAMPLE

29

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

§ Line-level profiling details:
§ Uses sampling profiling technique
§ Average overhead ~1.1x-1.6x (on certain benchmarks *)

§ Cross-platform:
§ Windows and Linux (Viewer-only on OSX)
§ Python 32- and 64-bit; 2.7.x, 3.5.X versions (3.6 with 2018 Beta)

30

Intel® VTune™ Amplifier Details

*	Measured	against	Grand	Unified	Python	Benchmark

Machine	specs:	HP	EliteBook 850	G1;	Intel®	Core™	i5-4300U	@1.90	Ghz (4	cores	with	HT	on)	CPU;	16	GB	RAM;	Windows	8.1	x86_64

7/13/17

16

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Profiler Summary

§ Profilers should be the first step when after a visual inspection does
not net performance advantages

§ Without Code Profilers, one is pretty much lost without the insight
provided by them, especially with the complexity of Python

§ Each of the open source profilers have different aspects they are good
at (or that they can see), so use accordingly

§ Tools such as VTune™ provide source, function, and hardware level
information if the open source profilers aren’t enough

§ Test often, and if in doubt profile your code!

31

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Parallelism And other Accelerators

7/13/17

17

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Many types of Parallelism

§ Parallelism is the best way to achieve performance gains in Python
§ Examples:

§ Message passing
§ MPI4Py*, Dask*

§ General parallelism
§ multiprocessing, Dask*

§ Multi-format parallelism
§ Cython*, Numba*
§ TBB, OpenMP are backends/runtimes
§ Numexpr*, NumPy*, et al.

§ At lower levels: OpenMP, TBB, and MKL, DAAL calls

33

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Distributed computing landscape

mpi4py pySpark Dask/distributed
.	.	.

§ New distributed computing technologies appear almost every year
§ These technologies help Python achieve task-based parallelism and

mitigate the issues that many people have with Python

34

7/13/17

18

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Two different flavors of Distributed: Dask and MPI4PY

§ MPI4PY*
§ Access to the MPI Library at the Python level
§ Accelerated with Intel® MPI Library
§ Best for composing things that have complex relationships

§ Dask*
§ Framework that uses distributed futures to construct tasks graphs

and execute via a scheduler
§ Specialized for computational workloads (numerical Python

parallelism), and comes with a lot of built-in functionality

35

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

MPI4PY

§ Allows one to utilize the
Message Passing Interface
(MPI) with the Python language

§ Designed for the parallel
computing world

§ Can handle very complex
relationships that don’t
necessarily fit “templates” of
other distributed task
frameworks

36

Image	From	MPI	readthedocs

7/13/17

19

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Dask

§ Easy way of accessing
distributed task-parallelism
in the NumPy*/SciPy*
ecosystem

§ Comes with Task Graphs,
Delayed wrappers,
diagnostic server

§ Can scale up and down
quickly depending on
needs (local computer, full
cluster)

37

Image	From	Dask*	documentation

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

DASK (Con’t)

§ Extremely easy to integrate in places where NumPy* and SciPy*
already exist

§ Is a bit “heavier” of a solution than MPI, so use accordingly
§ Works best when tasks have little intercommunication between

workers

38

7/13/17

20

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Other Python-level Accelerators

§ Cython*
§ Optimizing static compiler
§ Similar syntax to Python
§ Can interact with NumPy* pretty well
§ Supports calling C/C++ well

§ Numba*
§ Just-in-time (JIT) certain functions in Python
§ Optimizes down to Low Level Virtual Machine

(LLVM) code
§ Useful for code that can be instantiated once

and reused

39

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Numba

40

§ Accessed by using the
@jit decorator

§ May need special
compilation options to
get best out of it

§ Can cache the function
with cache=True

§ Access vectorization with
@vectorization decorator

Code	snipit from	the	Numba documentation

7/13/17

21

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

CythoN

§ Can statically compile native
code

§ Can utilize static typing for
faster code

§ Compiles to C files
§ Can pre-compile and import

Cython code/modules
§ Accessed with a package or via

the %%cython in Jupyter
notebooks

41

Code	from	the	Cython documentation

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Caveats

From the Cython docs:
§ “The general recommendation is that you should only try to compile

the critical paths in your code. If you have a piece of performance-
critical computational code amongst some higher-level code, you may
factor out the performance-critical code in a separate function and
compile the separate function with Numba. Letting Numba focus on
that small piece of performance-critical code has several advantages:
§ it reduces the risk of hitting unsupported features;
§ it reduces the compilation times;
§ it allows you to evolve the higher-level code which is outside of the

compiled function much easier.”

42

7/13/17

22

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vectorization

§ Special form of parallelism converted from an initial scalar form
§ Hardware supported parallelism of SIMD which can greatly assist

numerical pipelines
§ Main two components are numexpr* and the NumPy* that use

vectorization
§ Intel® Distribution for Python* does this for you with changes to

NumPy*, SciPy*, Scikit-learn* etc.
§ Occasionally using the raw numexpr* might fit one’s use case

43

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

NUMEXPR: the numerical Evaluator

§ Multi-core, multi-threaded
vectorization performance through
Vector Math Library (VML), part of the
Intel® MKL

§ Best on large array size calculations,
and transcendent expressions

§ Callable from the Python-level
§ Great for making changes that could

call down to vectorization code
without moving one’s code to C++
level

44

7/13/17

23

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

NUMEXPR (Con’t)
§ Easy to intermix with

NumPy* and SciPy*
code

§ Requires that you
understand the
numerical implications
of your code

§ This was one of the
methods we
accelerated NumPy*
and SciPy* in our
optimized IDP Package

45

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Parallelism and Other tOOLS: Usage Details

§ Clearly understand one’s workload and algorithms before
implementing anything with these tools

§ Profile one’s code to more accurately understand where to make code
changes

§ Try different strategies and mixes of optimization to see where
balance point is

§ Documentation is you friend: many of these technologies have lots of
gotchas and implementation quirks

46

7/13/17

24

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Optimizing the Black SCHOLES*
ALGORITHM

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

The Black Scholes* Algorithm

§ A financial options trading formula used for investment price
estimates

§ The formula calculates the price of a European ‘put’ and ‘call’ options
§ Is a partial differential equation (PDE) which describes the price of the

option over time
§ Is a great example of some of the optimization problems that exist in

real-world

48

7/13/17

25

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black-Scholes* (Con’t)

§ Algorithm is a PDE in
general form

§ Solvable for Call and Put
options

§ Goal is to solve for Call
and Put options

§ Putting it into Python is
next step

49

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black-Scholes* (Con’t)

§ Code generates the
intermediates of the formula,
and gives the corresponding
call/put

§ Generates for as many
options that exist (nopt)

§ Calculates final call/put at the
last two lines

50

7/13/17

26

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes* Initial ANalysis

§ Where do you think the problems are in the code?
§ What methods are you going to use to hunt them down?
§ How much of this code is using performance libraries?

§ Exercise: Come up with a game plan
§ Code is at:

https://github.com/triskadecaepyon/ep2017_tutorial_tune_performance
§ Or just search Github for “ep2017_tutorial_tune_performance”

51

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes* Initial Analysis (Setup)

§ You’ll need:
§ cProfile (included)
§ Line_profiler (conda install line_profiler)
§ Numexpr
§ Numba
§ Dask
§ Cython
§ Jupyter and Jupyter notebook

§ Optional:
§ VTune Amplifier2017 XE or later

52

7/13/17

27

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes* Initial ANalysis

§ What did you find?
§ How did cProfile help?
§ What did line_profiler do?

§ Notes about profiling:
§ cProfile:

§ use the import cProfile command, then cProfile.run(‘command’)
§ Line_profiler:

§ use “%load_ext line_profiler” in Jupyter
§ %lprun -f function function(args)

53

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes* Initial Analysis (CPROFILE)

54

7/13/17

28

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes* Initial Analysis (LINE_PROFILER)

55

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

What VTUNE SHOWS from the example

56

7/13/17

29

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

One form of optimization: NumPY*-specific math calls

§ Exercise: In this example, replace the functions from the math library
with NumPy* equivalents:
§ log
§ exp
§ erf
§ invsqrt

§ Re-run the profiling to see what you can find
§ Total time?
§ A change in what the bottlenecks were?

57

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NumPY Variant

§ Test out changes with NumPy* to the Naïve implementation of Black
Scholes*

§ Test with same methods: timeit, cProfile, line_profiler
§ What works? What doesn’t work?

58

7/13/17

30

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NumPY Variant (vectorized)

§ Test out changes with NumPy* to the vectorized implementation of
Black Scholes*

§ Test with same methods: timeit, cProfile, line_profiler
§ What works? What doesn’t work?

59

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NumPY* Variant (vectorized)

§ Loop removal helps by allowing use of NumPy’s native array
capabilities

§ Individually going through loops, even with NumPy* arrays is VERY
expensive

§ Loop-parallel has a few options, and this is one of them: vectorization!
§ On line_profiler, how many times did the code hits changes in this

new version?

60

7/13/17

31

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune Analysis of Black SCHOLES* with NUMPY*

61

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMEXPR*

§ Exercise: Modify the Black Scholes* algorithm to utilize numexpr*, and
re-run the same tests

§ Test with same methods: timeit, cProfile, line_profiler
§ What works? What doesn’t work?

§ What about the condensed version? How well does that work?

62

7/13/17

32

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMEXPR*

§ By interacting directly with numexpr*, you are calling out to the
vectorization capabilities without going through the NumPy* layer

§ By compressing the entire vectorization command of one’s calculation
in one expression, the vectorization engine can do significantly more

§ This is one of the ways we did some of our optimization work on
NumPy* itself for the Intel® Distribution for Python*!

63

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune Analysis of Black SCHOLES* with NUMEXPR

64

7/13/17

33

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMBA*

§ Exercise: Using the Numba example, test with same methods: timeit,
cProfile, line_profiler

§ What do you notice about the functions being imported?
§ Why do you think it uses the “nopython=True” option?
§ What works? What doesn’t work?

65

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMBA* (Variant 2)

§ What is different in this example? What does it change?
§ Using the Numba example, test with same methods: timeit, cProfile,

line_profiler
§ What works? What doesn’t work?

66

7/13/17

34

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMBA* (Variant 3)

§ What is different in this example? What does it change?
§ Using the Numba example, test with same methods: timeit, cProfile,

line_profiler
§ What works? What doesn’t work?

67

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune Analysis of Black SCHOLES* with NUMBA*

68

7/13/17

35

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: NUMBA*

§ This example uses Just-In-Time(JIT) compiling to achieve
performance gains

§ Because of this, profiling can become VERY difficult
§ The first run is slow because you pay for the compilation time, but the

function is cached afterwards
§ Many times this require writing in pure Python before utilizing Numba

69

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: DASK*

§ Exercise: What is different in this example? What does it change?
§ Using this example, test with same methods: timeit, cProfile,

line_profiler
§ What works? What doesn’t work?

70

7/13/17

36

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: DASK* (NumPY* mods)

§ What is different in this example? What does it change?
§ Using this example, test with same methods: timeit, cProfile,

line_profiler
§ How does the diagnostic server help?
§ What works? What doesn’t work?

71

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune Analysis of Black SCHOLES* with DASK

72

7/13/17

37

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: Cython*

§ Exercise: What is different in this example? What does it change?
§ Take a look at the .pyx file provided, then follow the instructions to

build the Cython* model
§ If you have the Intel® Compiler (icc), the resultant code will be MUCH

faster; gcc does not do very good vectorization!
§ Using this example, test with same methods: timeit, cProfile,

line_profiler

73

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black SCHOLES*: Cython

§ Cython* is another method of getting performance closer to C that
has similar syntax to Python

§ Essentially applies some of the rigidity of C to Python in trade for
better performance

§ Some annoyances on occasion about importing the code, makes
testing the code in production a bit difficult (as well as deployment)

§ Best performance is achieved with use of a performance compiler,
such as icc.

74

7/13/17

38

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Vtune Analysis of Black SCHOLES* with CYTHON*

75

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

VTUNE and MEMORY CONSUMPTION ANALYSIS

76

7/13/17

39

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

BLACK SCHOLES*: A SUMMARY

§ With these examples, a proper strategy and methodical testing w/
tools can properly accelerate one’s code properly

§ Understanding which technologies are good for what purposes can
help with selecting the best optimization technique for one’s code

§ Use of proper code profilers for the job can also help significantly
§ Advanced profilers such as VTune can reveal much more about how a

problem should be optimized (and what tools to use)
§ Remember that parallelism is something that takes much effort to

achieve, but the benefits can be tremendous

77

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

0

5

10

15

20

25

30

35

40

45

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

O
pt
io
ns
/s
ec

Size:	Number	of	Options

Performance	Speedups	for	Intel®	Distribution	for	Python*	for	Black	Scholes*	Formula	on	Intel®	Core™	i5	
Processor	(Higher	is	Better)

pip/numpy Intel	Python

i5Black Scholes* Benchmarks
Black Scholes algorithm on i5 processors (2017 Update 2)

78

7/13/17

40

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

0

20

40

60

80

100

120

140

160

180

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

O
pt

io
ns

/s
ec

Size: Number of options

Performance Speedups for Intel® Distribution for Python* for Black Scholes* Formula on Intel®
Xeon™ Processors (Higher is Better)

pip/numpy Intel Python

XeonBlack Scholes* Benchmarks
Black Scholes algorithm on Xeon processors (2017 Update 2)

79

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

0

50

100

150

200

250

300

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576 2097152 4194304 8388608 16777216

O
pt
io
ns
/s
ec

Size:	Number	of	options

Performance	Speedups	for	Intel®	Distribution	for	Python*	for	Black	Scholes*	Formula	on	Intel®	Xeon	
Phi™	Product	Family	(Higher	is	Better)

pip/numpy Intel	Python

Xeon	PhiBlack Scholes* Benchmarks
Black Scholes algorithm on Xeon Phi processors (2017 Update 2)

80

7/13/17

41

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Configuration Information

Software
• Pip*/NumPy*: Installed with Pip, Ubuntu*, Python* 3.5.2, NumPy=1.12.1, scikit-learn*=0.18.1
• Windows*, Python 3.5.2, Pip/NumPy=1.12.1, scikit-learn=0.18.1
• Intel® Distribution for Python 2017, Update 2

Hardware
• Intel® Core™ i5-4300M processor @ 2.60 GHz 2.59 GHz, (1 socket, 2 cores, 2 threads per core), 8GB DRAM
• Intel® Xeon® E5-2698 v3 processor @ 2.30 GHz (2 sockets, 16 cores each, 1 thread per core), 64GB of DRAM
• Intel® Xeon Phi™ processor 7210 @ 1.30 GHz (1 socket, 64 cores, 4 threads per core), DRAM 32 GB, MCDRAM (Flat

mode enabled) 16GB

Modifications
• Scikit-learn: conda installed NumPy with Intel® Math Kernel Library (Intel® MKL) on Windows (pip install scipy on

Windows contains Intel® MKL dependency)
• Black Scholes* on Intel Core i5 processor/Windows: Pip installed NumPy and conda installed SciPy

81

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

How were these Optimizations Done?

§ Many of the changes initially leverage research on NumPy*
vectorization code

§ Changes were made at the numexpr* level (such as the ones that were
shown), in NumPy’s source

§ Additional changes were done at the C level with the Intel MKL
§ Notice that even with these changes that should help the stock pip

version, it does not scale very well
§ Advanced vectorization through AVX 2.0 and AVX512 really help the

algorithm scale out on hardware

82

7/13/17

42

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Black Scholes Example References

§ https://github.com/IntelPython/BlackScholes_bench

§ https://en.wikipedia.org/wiki/Black–Scholes_model

§ Multiprocessing, MPI Variants
§ https://github.com/IntelPython/BlackScholes_bench/tree/parallel2017

83

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Collaborative Filtering Example

7/13/17

43

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Collaborative Filtering Example

§ Exercise: optimize
Collaborative filtering

§ Collaborative filtering is
used by recommender
systems.

§ Uses dot product/cosine
similarity to generate
similarity calculation
(memory-based)

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Collaborative Filtering Example: Methods

§ Similar to Black Scholes*, utilize timeit, cProfile, line_profiler to
determine how the algorithms perform and what can be seen

§ Several examples to demonstrate parallelism methods:
§ NumPy*
§ Dask*
§ Numba*
§ NumPy*+Numba*
§ Dask*+Numba*

86

7/13/17

44

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Collaborative Filtering Example: Analysis

§ What can you see about the example?
§ How do the different variants fair against each other?
§ How do the composable variants compare?
§ Why do you think the composable variants work well?
§ What method(s) would you use?

87

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Collaborative Filtering References

§ https://github.com/IntelPython/composability_bench/blob/master/col
lab_filt.py

§ https://github.com/IntelPython/composability_bench
§ https://en.wikipedia.org/wiki/Collaborative_filtering

88

7/13/17

45

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Code Profiling Examples Summary

§ Profiling code as a starting point helps guide what methods one
decides to look for optimization

§ Developing one’s ability to see inherent parallelism, and composable
parallelism levels can help as one develops future codebases

§ Use of the correct profiler for the job will help validate one’s changes
to performance code

§ Knowledge and increased usage of performance
libraries+vectorization will ensure one’s tuning efforts are realized

§ Parallelism is a diverse space; lots of things happening in the Python
world!

89

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Next Up: PyCOMPSs from Barcelona
Supercomputing Center

7/13/17

46

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Additional INformation

§ Intel® Distribution for Python* Documentation
§ https://software.intel.com/en-us/intel-distribution-for-python-

support/documentation

§ 2018 Beta information:
§ https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2018-beta

§ cProfile:
§ https://docs.python.org/3.5/library/profile.html

§ Line_profiler:
§ https://github.com/rkern/line_profiler

91

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

Legal Disclaimer & Optimization Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES
NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.
Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

For more complete information about compiler optimizations, see our Optimization Notice at
https://software.intel.com/en-us/articles/optimization-notice#opt-en.

Copyright © 2017, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel
Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others.

92

7/13/17

47

© 2017 Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.
For more complete information about compiler optimizations, see our Optimization Notice.

