
CFFI and PyPy

Armin Rigo

EuroPython 2016

July 2016



CFFI

I created in 2012

I successful project according to PyPI

I 3.4 million downloads for January
I total 22.3 millions, 25th place on pypi-ranking.info

I Django is 31st

I some high-visibility projects have switched to it (Cryptography)



PyPy

I success: harder to say for sure

I more later



CFFI



CFFI

I call C from Python

I CFFI = C Foreign Function Interface

I shares ideas from Cython, ctypes, LuaJIT’s FFI, SWIG...



CFFI demo

$ man getpwnam

SYNOPSIS
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwnam(const char *);



CFFI demo

.

.

.
The passwd structure is defined in <pwd.h>
as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */

.

.

.



CFFI demo

import cffi
ffibuilder = cffi.FFI()

ffibuilder.cdef("""
typedef int... uid_t;
struct passwd {

uid_t pw_uid;
...;

};
struct passwd *getpwnam(const char *);

""")



CFFI demo

ffibuilder.set_source("_pwuid_cffi", """
#include <sys/types.h>
#include <pwd.h>

""")

ffibuilder.compile()

... and put that in pwuid_build.py



CFFI demo

python pwuid_build.py

creates _pwuid_cffi.so



CFFI demo

from _pwuid_cffi import lib
print lib.getpwnam("username").pw_uid

I That’s all folks



CFFI demo

from _pwuid_cffi import ffi, lib

I lib gives access to all functions from the cdef
I like lib.getpwnam()

I ffi gives access to a few general helpers



ffibuilder.cdef()

ffibuilder.cdef("""
int foo1(int a, int b);

typedef ... Window;
Window *make_window(int w, int h);
void hide_window(Window *);

""")



ffi.new()

>>> p = ffi.new("char[]", "Some string")
>>> p
<cdata ’char[]’ owning 12 bytes>

>>> p[1]
’o’

>>> q = lib.getpwnam(p)
>>> q
<cdata ’struct passwd *’ 0x12345678>

>>> q.pw_uid
500



ffi.cast()

>>> q = lib.getpwnam("root")
>>> q
<cdata ’struct passwd *’ 0x12345678>

>>> ffi.cast("void *", q)
<cdata ’void *’ 0x12345678>

>>> int(ffi.cast("intptr_t", q))
305419896
>>> hex(_)
0x12345678



ffi.string()

>>> p
<cdata ’struct passwd *’ 0x12345678>

>>> p.pw_uid
500

>>> p.pw_name
<cdata ’char *’ 0x5234abcd>

>>> ffi.string(p.pw_name)
"username"



ffi.new_handle()

>>> x = X()
>>> h1 = ffi.new_handle(x)
>>> h1
<cdata ’void *’ handle to

<X object at 0x123456>>
>>> lib.save_away(h1)

>>> h2 = lib.fish_again()
>>> h2
<cdata ’void *’ 0x87654321>

>>> ffi.from_handle(h2)
<X object at 0x123456>



CFFI

I supports more or less the whole C

I there is more than this short introduction suggests



CFFI

I in real life, you want to provide a Pythonic API to a C library

I you write Python functions and classes implementing it

I all CFFI objects like <cdata ’foo *’> are hidden inside



CFFI

I other use cases:
I call C code that you write yourself, not a separate C library
I API versus ABI mode: can also run in a ctypes-like way if you

don’t want to depend on any C compiler at all
I support for "embedding" Python inside some other non-Python

program
I now you really never need the CPython C API any more



CFFI

I see the docs: http://cffi.readthedocs.org/

http://cffi.readthedocs.org/


PyPy



PyPy

I a Python interpreter

I different from the standard, which is CPython

I main goal of PyPy: speed



PyPy

$ pypy
Python 2.7.10 (7e8df3df9641, Jun 28 2016)
[PyPy 5.3.1 with GCC 6.1.1] on linux2
Type "help", "copyright", "credits" or
>>>> 2+3
5
>>>>



PyPy

I run pypy my_program.py instead of python
my_program.py

I contains a JIT compiler



PyPy: Garbage Collection

I "moving, generational, incremental GC"

I objects don’t have reference counters

I allocated in a "nursery"

I when nursery full, surviving objects are moved out

I usually works on nursery objects only (fast), but rarely also
perform a full GC



PyPy: C extensions

I PyPy works great for running Python

I less great when there are CPython C extension modules involved

I not directly possible: we have moving, non-reference-counted
objects, and the C code expects non-moving, reference-counted
objects



PyPy: C extensions

I PyPy has still some support for them, called its cpyext module

I emulate all objects for C extensions with a shadow, non-movable,
reference-counted object

I cpyext is slow

I it should "often" work even with large libraries (e.g. numpy
support is mostly there)



PyPy: ad

I but, hey, if you need performance out of Python and don’t rely
critically on C extension modules, then give PyPy a try

I typical area where it works well: web services



CPython C API: the problem

I CPython comes with a C API

I very large number of functions

I assumes objects don’t move

I assumes a "reference counting" model



CPython C API

I actually, the API is some large subset of the functions inside
CPython itself



CPython C API

I easy to use from C

I historically, part of the success of Python



CPython C API

I further successful tools build on top of that API:
I SWIG
I Cython
I and other binding generators
I now CFFI



CFFI

I but CFFI is a bit different
I it does not expose any part of the CPython C API
I everything is done with a minimal API on the ffi object which is

closer to C
I ffi.cast(), ffi.new(), etc.

I that means it can be directly ported



CFFI and PyPy

I we have a PyPy version of CFFI

I the demos I have given above work equally well on CPython or
on PyPy

I (supporting PyPy was part of the core motivation behind CFFI)



CFFI: performance

I in PyPy, JIT compiler speeds up calls, so it’s very fast

I in CPython, it doesn’t occur, but it is still reasonable when
compared with alternatives

I main issue is that we write more code in Python with CFFI, which
makes it slower on CPython---but not really on PyPy



CFFI: summary

I call C from Python
I works natively on CPython and on PyPy

I and easy to port to other Python implementations

I supports CPython 2.6, 2.7, 3.2 to 3.5, and is integrated with PyPy



CFFI

I independent on the particular details of the Python
implementation

I using CFFI, you call C functions and manipulate C-pointer-like
objects directly from Python

I you do in Python all logic involving Python objects
I there are no (official) ways around this API to call the CPython C

API, and none are needed



CFFI

I two reasons to switch to it :-)
I easy and cool
I better supported on non-CPython implementations

I http://cffi.readthedocs.org/

http://cffi.readthedocs.org/

