
Learning Deep
Broadband Network@HOME

Hongjoo LEE

Who am I?

● Machine Learning Engineer
○ Fraud Detection System
○ Software Defect Prediction

● Software Engineer
○ Email Services (40+ mil. users)
○ High traffic server (IPC, network, concurrent programming)

● MPhil, HKUST
○ Major : Software Engineering based on ML tech
○ Research interests : ML, NLP, IR

Outline

Data Collection Time series Analysis Forecast Modeling Anomaly Detection

Naive approach

Logging SpeedTest
Data preparation

Handling time series

Seasonal Trend Decomposition Rolling Forecast Basic approaches

Stationarity
Autoregression, Moving Average

Autocorrelation

ARIMA Multivariate Gaussian

LSTM

Home Network

Home Network

Home Network

Anomaly Detection (Naive approach in 2015)

Problem definition

● Detect abnormal states of Home Network
● Anomaly detection for time series

○ Finding outlier data points relative to some usual signal

Types of anomalies in time series

● Additive outliers

Types of anomalies in time series

● Temporal changes

Types of anomalies in time series

● Level shift

Outline

Data Collection Time series Analysis Forecast Modeling Anomaly Detection

Naive approach

Logging SpeedTest
Data preparation

Handling time series

Seasonal Trend Decomposition Rolling Forecast Basic approaches

Stationarity
Autoregression, Moving Average

Autocorrelation

ARIMA Multivariate Gaussian

LSTM

Logging Data

● Speedtest-cli

● Every 5 minutes for 3 Month. ⇒ 20k observations.

$ speedtest-cli --simple
Ping: 35.811 ms
Download: 68.08 Mbit/s
Upload: 19.43 Mbit/s
$ crontab -l
*/5 * * * * echo ‘>>> ‘$(date) >> $LOGFILE; speedtest-cli --simple >> $LOGFILE
2>&1

Logging Data

● Log output

$ more $LOGFILE
>>> Thu Apr 13 10:35:01 KST 2017
Ping: 42.978 ms
Download: 47.61 Mbit/s
Upload: 18.97 Mbit/s
>>> Thu Apr 13 10:40:01 KST 2017
Ping: 103.57 ms
Download: 33.11 Mbit/s

Upload: 18.95 Mbit/s

>>> Thu Apr 13 10:45:01 KST 2017

Ping: 47.668 ms

Download: 54.14 Mbit/s

Upload: 4.01 Mbit/s

Data preparation

● Parse data

class SpeedTest(object):
 def __init__(self, string):
 self.__string = string
 self.__pos = 0
 self.datetime = None# for DatetimeIndex
 self.ping = None # ping test in ms
 self.download = None# down speed in Mbit/sec
 self.upload = None # up speed in Mbit/sec

 def __iter__(self):
 return self

 def next(self):
 …

Data preparation

● Build panda DataFrame

speedtests = [st for st in SpeedTests(logstring)]

dt_index = pd.date_range(

speedtests[0].datetime.replace(second=0, microsecond=0),

periods=len(speedtests), freq='5min')

df = pd.DataFrame(index=dt_index,

data=([st.ping, st.download, st.upload] for st in speedtests),

columns=['ping','down','up'])

Data preparation

● Plot raw data

Data preparation

● Structural breaks
○ Accidental missings for a long period

Data preparation

● Handling missing data
○ Only a few occasional cases

Handling time series

● By DatetimeIndex
○ df[‘2017-04’:’2017-06’]
○ df[‘2017-04’:]
○ df[‘2017-04-01 00:00:00’:]
○ df[df.index.weekday_name == ‘Monday’]
○ df[df.index.minute == 0]

● By TimeGrouper
○ df.groupby(pd.TimeGrouper(‘D’))
○ df.groupby(pd.TimeGrouper(‘M’))

Patterns in time series

● Is there a pattern in 24 hours?

Patterns in time series

● Is there a daily pattern?

Components of Time series data

● Trend :The increasing or decreasing direction in the series.
● Seasonality : The repeating in a period in the series.
● Noise : The random variation in the series.

Components of Time series data

● A time series is a combination of these components.
○ yt = Tt + St + Nt (additive model)
○ yt = Tt × St × Nt (multiplicative model)

Seasonal Trend Decomposition

from statsmodels.tsa.seasonal import seasonal_decompose
decomposition = seasonal_decompose(week_dn_ts)

plt.plot(week_dn_ts) # Original

plt.plot(decomposition.seasonal)

plt.plot(decomposition.trend)

Rolling Forecast

A B C

Rolling Forecast

from statsmodels.tsa.arima_model import ARIMA

forecasts = list()

history = [x for x in train_X]

for t in range(len(test_X)): # for each new observation

model = ARIMA(history, order=order) # update the model

y_hat = model.fit().forecast() # forecast one step ahead

forecasts.append(y_hat) # store predictions

history.append(test_X[t]) # keep history updated

Residuals ~ N(ᶞ, ᶥ2)

residuals = [test[t] - forecasts[t] for t in range(len(test_X))]

residuals = pd.DataFrame(residuals)

residuals.plot(kind=’kde’)

Anomaly Detection (Basic approach)

● IQR (Inter Quartile Range)
● 2-5 Standard Deviation
● MAD (Median Absolute Deviation)

Anomaly Detection (Naive approach)

● Inter Quartile Range

Anomaly Detection (Naive approach)

● Inter Quartile Range
○ NumPy

○ Pandas

q1, q3 = np.percentile(col, [25, 75])

iqr = q3 - q1

np.where((col < q1 - 1.5*iqr) | (col > q3 + 1.5*iqr))

q1 = df[‘col’].quantile(.25)

q3 = df[‘col’].quantile(.75)

iqr = q3 - q1

df.loc[~df[‘col’].between(q1-1.5*iqr, q3+1.5*iqr),’col’]

Anomaly Detection (Naive approach)

● 2-5 Standard Deviation

Anomaly Detection (Naive approach)

● 2-5 Standard Deviation
○ NumPy

○ Pandas

std = pd[‘col’].std()

med = pd[‘col’].median()

df.loc[~df[‘col’].between(med - 3*std, med + 3*std), 0]

std = np.std(col)

med = np.median(col)

np.where((col < med - 3*std) | (col < med + 3*std))

Anomaly Detection (Naive approach)

● MAD (Median Absolute Deviation)
○ MAD = median(|Xi - median(X)|)
○ “Detecting outliers: Do not use standard deviation around the mean, use absolute deviation

around the median” - Christopher Leys (2013)

Outline

Data Collection Time series Analysis Forecast Modeling Anomaly Detection

Naive approach

Logging SpeedTest
Data preparation

Handling time series

Seasonal Trend Decomposition Rolling Forecast Basic approaches

Stationarity
Autoregression, Moving Average

Autocorrelation

ARIMA Multivariate Gaussian

LSTM

Stationary Series Criterion

● The mean, variance and covariance of the series are time invariant.

stationary non-stationary

Stationary Series Criterion

● The mean, variance and covariance of the series are time invariant.

stationary non-stationary

Stationary Series Criterion

● The mean, variance and covariance of the series are time invariant.

stationary non-stationary

Test Stationarity

Differencing

● A non-stationary series can be made stationary after differencing.
● Instead of modelling the level, we model the change
● Instead of forecasting the level, we forecast the change
● I(d) = yt - yt-d
● AR + I + MA

Autoregression (AR)

● Autoregression means developing a linear model that uses observations at
previous time steps to predict observations at future time step.

● Because the regression model uses data from the same input variable at
previous time steps, it is referred to as an autoregression

Moving Average (MA)

● MA models look similar to the AR component, but it's dealing with different
values.

● The model account for the possibility of a relationship between a variable
and the residuals from previous periods.

ARIMA(p, d, q)

● Autoregressive Integrated Moving Average
○ AR : A model that uses dependent relationship between an observation and some number of

lagged observations.
○ I : The use of differencing of raw observations in order to make the time series stationary.
○ MA : A model that uses the dependency between an observation and a residual error from a

MA model.

● parameters of ARIMA model
○ p : The number of lag observations included in the model
○ d : the degree of differencing, the number of times that raw observations are differenced
○ q : The size of moving average window.

Identification of ARIMA

● Autocorrelation function(ACF) : measured by a simple correlation between
current observation Yt and the observation p lags from the current one Yt-p.

● Partial Autocorrelation Function (PACF) : measured by the degree of
association between Yt and Yt-p when the effects at other intermediate time
lags between Yt and Yt-p are removed.

● Inference from ACF and PACF : theoretical ACFs and PACFs are available for
various values of the lags of AR and MA components. Therefore, plotting
ACFs and PACFs versus lags and comparing leads to the selection of the
appropriate parameter p and q for ARIMA model

Identification of ARIMA (easy case)

● General characteristics of theoretical ACFs and PACFs

● Reference :
○ http://people.duke.edu/~rnau/411arim3.htm
○ Prof. Robert Nau

model ACF PACF

AR(p) Tail off; Spikes decay towards zero Spikes cutoff to zero after lag p

MA(q) Spikes cutoff to zero after lag q Tails off; Spikes decay towards zero

ARMA(p,q) Tails off; Spikes decay towards zero Tails off; Spikes decay towards zero

http://people.duke.edu/~rnau/411arim3.htm
http://people.duke.edu/~rnau/411arim3.htm

Identification of ARIMA (easy case)

Identification of ARIMA (complicated)

Anomaly Detection (Parameter Estimation)

xdown xup xdown

x up

Anomaly Detection (Multivariate Gaussian Distribution)

Anomaly Detection (Multivariate Gaussian)

import numpy as np

from scipy.stats import multivariate_normal

def estimate_gaussian(dataset):

mu = np.mean(dataset, axis=0)

sigma = np.cov(dataset.T)

return mu, sigma

def multivariate_gaussian(dataset, mu, sigma):

p = multivariate_normal(mean=mu, cov=sigma)

return p.pdf(dataset)

mu, sigma = estimate_gaussian(train_X)

p = multivariate_gaussian(train_X, mu, sigma)

anomalies = np.where(p < ep) # ep : threshold

Anomaly Detection (Multivariate Gaussian)

import numpy as np

from scipy.stats import multivariate_normal

def estimate_gaussian(dataset):

mu = np.mean(dataset, axis=0)

sigma = np.cov(dataset.T)

return mu, sigma

def multivariate_gaussian(dataset, mu, sigma):

p = multivariate_normal(mean=mu, cov=sigma)

return p.pdf(dataset)

mu, sigma = estimate_gaussian(train_X)

p = multivariate_gaussian(train_X, mu, sigma)

anomalies = np.where(p < ep) # ep : threshold

Anomaly Detection (Multivariate Gaussian)

import numpy as np

from scipy.stats import multivariate_normal

def estimate_gaussian(dataset):

mu = np.mean(dataset, axis=0)

sigma = np.cov(dataset.T)

return mu, sigma

def multivariate_gaussian(dataset, mu, sigma):

p = multivariate_normal(mean=mu, cov=sigma)

return p.pdf(dataset)

mu, sigma = estimate_gaussian(train_X)

p = multivariate_gaussian(train_X, mu, sigma)

anomalies = np.where(p < ep) # ep : threshold

Outline

Data Collection Time series Analysis Forecast Modeling Anomaly Detection

Naive approach

Logging SpeedTest
Data preparation

Handling time series

Seasonal Trend Decomposition Rolling Forecast Basic approaches

Stationarity
Autoregression, Moving Average

Autocorrelation

ARIMA Multivariate Gaussian

LSTM

Long Short-Term Memory

h0 h1 h2 ht-2 ht-1

c0 c1 c2 ct-2 ct-1

x0 x1 x2 xt-2 xt-1

xt

LSTM layer

Long Short-Term Memory

x0
dn x0

up x0
pg

xt
dn x1

up x2
pg

xt-1
upxt-1

dn xt-1
pg

h0 h1 h2 ht-2 ht-1

c0 c1 c2 ct-2 ct-1

x0 x1 x2 xt-2 xt-1

xt

LSTM layer

Long Short-Term Memory
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from sklearn.metrics import mean_squared_error

model = Sequential()

model.add(LSTM(num_neurons, stateful=True, return_sequences=True,

batch_input_shape=(batch_size, timesteps, input_dimension))

model.add(LSTM(num_neurons, stateful=True,

batch_input_shape=(batch_size, timesteps, input_dimension))

model.add(Dense(1))

model.compile(loss='mean_squared_error', optimizer='adam')

for i in range(num_epoch):

model.fit(train_X, y, epochs=1, batch_size=batch_size, shuffle=False)

model.reset_states()

Long Short-Term Memory

● Will allow to model sophisticated and seasonal dependencies in time series
● Very helpful with multiple time series
● On going research, requires a lot of work to build model for time series

Summary

● Be prepared before calling engineers for service failures
● Pythonista has all the powerful tools

○ pandas is great for handling time series
○ statsmodels for analyzing and modeling time series
○ sklearn is such a multi-tool in data science
○ keras is good to start deep learning

● Pythonista needs to understand a few concepts before using the tools
○ Stationarity in time series
○ Autoregressive and Moving Average
○ Means of forecasting, anomaly detection

● Deep Learning for forecasting time series
○ still on-going research

● Do try this at home

Contacts

lee.hongjoo@yandex.com

linkedin.com/in/hongjoo-lee

