
EFFECTIVE
CODE

REVIEW

EFFECTIVE
CODE

REVIEW

Who am I?

@d0ugal

Raise your
hand…

Not doing code review?

“the average defect detection rate is only
25 percent for unit testing, 35 percent for

function testing, and 45 percent for
integration testing. In contrast, the

average effectiveness of design and code
inspections are 55 and 60 percent”

Code Complete by Steve McConnell

“The only hurdle to a code review is
finding a developer you respect to do it,

and making the time to perform the
review. Once you get started, I think you'll
quickly find that every minute you spend

in a code review is paid back tenfold.”

Jeff Atwood (Coding Horror)

“Formal design and code inspections […]
often top 85 percent in defect removal

efficiency and average about 65 percent”

Measuring Defect Potentials and Defect Removal Efficiency

Code Review Goals
Expectation vs Outcome

“While finding defects remains the main
motivation for review, reviews are less

about defects than expected and instead
provide additional benefits such as

knowledge transfer, increased team
awareness, and creation of alternative

solutions to problems.”

Expectations, Outcomes, and Challenges Of Modern Code Review

Comment Outcomes
1. Code Improvements (29%)
2. Understanding
3. Social Communications
4. Defects (14%)
5. External Impact
6. Testing
7. Review Tool
8. Knowledge Transfer
9. Misc

Authors

Reviewers

VS
Authors

Reviewers

Code Review
Code Discussion

Code Collaboration
…

&
Authors

Reviewers

Authoring Changes

Don’t start with code!

https://flic.kr/p/cexrh1

https://flic.kr/p/cexrh1

Adhere to Project Guidelines
Write test.

Write documentation.
Test the relevant platforms.

Follow the Style guide.

Provide Context

https://flic.kr/p/nZpgc6

Small & Contained

“code review:
10 LOC - 9 issues,

500 LOC - looks fine”

Mikhail Garber
(@mikhailgarber)

“Its regression coefficients are positive,
indicating that larger patches lead to a
higher likelihood of reviewers missing

some bugs. Similarly, number of files has a
good explanatory power in all four

systems.”

Investigating Code Review Quality:
Do People and Participation Matter?

Opening a Review is the start
Start of the conversation

Don’t ask for it to be merged, ask for
it to be reviewed

Relinquish Ownership
“0% thankfully. Coders act like
they've painted a masterpiece

and tend to debate every piece
of feedback.”

Mark Litwintschik
(@marklit82)

</Authoring Changes>
Code Review is hard.

Reviewing Changes

Shared Responsibility

Contributions == Puppies

Everyone Reviews
Juniors. Seniors.

Review to learn, verify and teach. Not
necessarily in that order.

Keep reviewers on the same page

If they are all reviewing to different
rules, it will never make sense

Automation

https://flic.kr/p/5Pnxus

https://flic.kr/p/5Pnxus

Remove the Bikeshed

https://flic.kr/p/8qqMca

Multiple Reviewers

Frequent, Short Reviews

https://flic.kr/p/atDNLR

Constructive criticism and Praise

It’s easy to just point out the bad
things, but when somebody teaches
you something - “I didn’t know you
could do that!” moments - let them

know.

Be Polite and aware of tone
Some things can come across overly

negative.

“Why didn’t you do …?”

Sounds more negative written than
in person. Replace with

“Could we do this …?”

Never harsh. Never Personal

https://flic.kr/p/efcTcb

</Reviewing Changes>
Writing Code is hard.

Collaboration
Help each other.

Automate what you can.
Be kind to yourself.

Tooling
GitHub? Gerrit? Phabricator?

GitLab? Review Board?

Review Before The
Merge

GitHub
Loose workflow. Labels are

useful.

Simple UI.

Gerrit
Very defined. Multiple

reviewers.

Code Review Data

Questions?

twitter.com/d0ugal

github.com/d0ugal

dougal@dougalmatthews.com

(Sort-of related; OpenStack Open
Space tomorrow afternoon)

mailto:dougal@dougalmatthews.com

