
Completely free Open Source and MIT license

MicroPython is written in C99 and the entire MicroPython core is available for general use under the very
liberal MIT license. Most libraries and extension modules (some of which are from a third party) are also
available under MIT or similar licenses.

You can freely use and adapt MicroPython for personal use, in education, and in commercial products.

MicroPython is developed in the open on GitHub and the source code is available at the GitHub page, and on
the download page. Everyone is welcome to contribute to the project.

Code: state-of-the-art and highly robust

MicroPython employs many advanced coding techniques, and lots of tricks to maintain a compact size while still having a full set of features.

• highly configurable due to many compile-time configuration options
• support for many architectures (x86, x86-64, ARM, ARM Thumb, Xtensa)

• extensive test suite with over 590 tests, and more than 18,500 individual testcases
• code coverage at 98.4% for the core and at 96.3% for the core plus extended modules

• fast start-up time from boot to loading of first script (150 microseconds to get to boot.py, on PYBv1.1 running at 168MHz)
• a simple, fast and robust mark-sweep garbage collector for heap memory

• a MemoryError exception is raised if the heap is exhausted
• a RuntimeError exception is raised if the stack limit is reached

• support for running Python code on a hard interrupt with minimal latency
• errors have a backtrace and report the line number of the source code

• constant folding in the parser/compiler
• pointer tagging to fit small integers, strings and objects in a machine word

• transparent transition from small integers to big integers
• support for 64-bit NaN boxing object model

• support for 30-bit stuffed floats, which don't require heap memory
• a cross-compiler and frozen bytecode, to have pre-compiled scripts that don't take any RAM (except for any dynamic objects they create)

• multithreading via the "_thread" module, with an optional global-interpreter-lock (still work in progress, only available on selected ports)
• a native emitter that targets machine code directly rather than the bytecode virtual machine
• inline assembler (currently Thumb and Xtensa instruction sets only)

Is it possible to put Python on a Microcontroller?

April 2013: The idea for MicroPython

September 2013: first flashing LED in MicroPython
October 2013: REPL and filesystem

Kickstarter Launch at 13 November 2013 with
funding goal 15 000 GBP.
After 30 days 1931 backers raised 97 803 GBP to
make this project happen

Port to LEON/SPARC/RTEMS for Space

separation of the VM and compiler
cross compiler and persistent bytecode
64-bit NaN-boxing object model
understandong of determinism

Satellite Control at the application layer

2nd Kickstarter: MicroPython on the ESP8266
MicroPython run like clockwork on the bare metal for ESP8266 Wi-Fi

March 2016: 1384 backers raised 28 334 GBP pure Software
Campagne with multiple streach goals

• develop, test and document a suite of drivers for environmental
sensors that can run on the ESP8266 (and other MP boards).

• Implement a simple micro database on the ESP8266.
• Implement a native emitter for the ESP8266 (Xtensa architecture).

E-Agle Trento Racing Team uses the
pyboards for controlling the interface for
the driver of a racing car.

George Robotics Ltd – the company behind MicroPython was
founded to continue the development of MicroPython

NEW LOGO

Pyboard in a rocket!
(Rocket Launch for International Student Satellites (ARLISS)
A pyboard was used to meassure acceleration in the
rocket and it went up to 12,000 ft

MicroPython in the press

"MicroPython: more powerful than
Arduino, simpler than the Raspberry Pi"
2013 WIRED UK

MicroPython was announced as the
"Linux for the IoT"
2016 Elektor Magazine

Proper Python with hardware-specific modules

MicroPython is a full Python compiler and runtime that runs on
the bare-metal. You get an interactive prompt (the REPL) to
execute commands immediately, along with the ability to run
and import scripts from the built-in filesystem.
The REPL has history, tab completion, auto-indent and paste
mode for a great user experience.

MicroPython strives to be as compatible as possible with normal
Python (known as CPython) so that if you know Python you
already know MicroPython. On the other hand, the more you
learn about MicroPython the better you become at Python.

2 Talks at the PyCon UK:

Micro Python - Kickstarter Experience
Micro Python - shrinking Python down to run on a microcontroller

2 Talks at the PyCon Australia:

From Kickstarter to Space
Scripting the Internet of Things

Micro Python is a complete rewrite, from scratch, of the Python scripting language. It is written in clean, ANSI C and includes a complete parser, compiler,
virtual machine, runtime system, garbage collector and support libraries to run on a microcontroller.
The compiler can compile to byte code or native machine code, selectable per function using a function decorator. It also supports inline assembler.
All compilation happens on the chip, so there is no need for any software on your PC.

Prestigious
Community Service
Award by Python
Software Foundation

For his extensive
volunteer work on the
BBC micro:bit and
MicroPython Damien
Geoorge received the
prestigious Community
Service Award.
Furthermore, Damien
has spent time
answering questions,
offering help and
reviewing code from the
wider
MicroPython/micro:bit
community. Through his
work on the MicroPython
board, optimizations
have also been made to
CPython's speed.
https://www.python.org/
community/awards/psf-
awards/…

George Robotics Limited (the company behind
MicroPython) is proud to announce that the
European Space Agency (ESA) will be funding
further development of MicroPython, to
determine the suitability of the language for
space-based applications, in particular for
payloads.

Research and development will focus on
making MicroPython more robust for critical
embedded systems, with emphasis on
determinism of the virtual machine and
memory management.

The research program foresees the
development of a port of MicroPython to the
SPARC architecture, which will be made
available under an ESA community license.

ESA has generously agreed that all
improvements to MicroPython that are made
as part of this R&D program can be
incorporated into the generic implementation.

E-Paper skin for the pyboard

Ranking in the top 100 of the most popular projects on GitHub in C/C++

More than 160 contributors, 4 850 stars and 1000 forks on GitHub
See for yourself: https://github.com/micropython

How MicroPython was ported to the BBC Micro:Bit by Nicholas N. Tollervey

In 2015 the BBC explained a staggering "moon-shot" project: to create a small, computing device to
be delivered to ALL year 7 children (11-12 years old) in the UK. The newly christened BBC micro:bit
would facilitate the first step towards inspiring digital creativity in a new generation of school
children. Nicholas Torvalls brought the BBC:MicroBit and Damien George together. Besides a couple
of other programming languages it's now possible to run MicroPython on this device.

please visit: http://ntoll.org/article/story-micropython-on-microbit to read the full story.

Learn how to use MicroPython to make
cool stuff. This practical book assumes no
previous knowledge of programming and
takes you on a journey from first steps to
advanced projects. Written by the
programmer who proposed, coordinated,
and contributed to getting MicroPython
on the BBC micro: bit, there's no better
person to teach you this topic.

MicroPython pyboard available for everyone

MicroPython went to space

MicroPython went to school

More information at www.micropython.org

Introduction of a modular system to easily build
electronic devices

Streach Goals:

• 40 000 GBP Wi-Fi support via CC3000 module
• 50 000 GBP Ethernet WIZ820io
• 60 000 GBP NRF24L01 low power wireless module

OLED skin for the pyboard – you can see first
prototypes here:

MicroPython has an inline assembler

import micropython

define a Thumbcode inlineassembler function

@micropython.asm_thumb

def asm_add(r0, r1):

add(r0, r0, r1)

use it as a normal Python function

total = asm_add(1, 2)

MicroPython has a file system

import os

list root directory

print(os.listdir('/'))

print current directory

print(os.getcwd())

open and read a file from the SD card

with open('/sd/readme.txt') as f:

print(f.read())

full range of numeric types

small integer (fits in a machine word)

>>> 123

123

big integer

>>> 1 << 160

1461501637330902918203684832716283019655932542976

floating point

>>> 1.23e6

1230000.0

complex numbers

>>> (1 + 2j) * 4j

(8+4j)

import time

time.sleep(1) # sleep for 1 second

time.sleep_ms(500) # sleep for 500 milliseconds

time.sleep_us(10) # sleep for 10 microseconds

start = time.ticks_ms() # get millisecond counter

delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

DAC (digital to analog conversion)

from pyb import Pin, ADC

read value, 04095

adc = ADC(Pin('X19'))

adc.read()

import pyb

duplicate REPL on UART(1)

pyb.repl_uart(pyb.UART(1, 9600))

pause CPU, waiting for interrupt

pyb.wfi()

get CPU and bus frequencies

pyb.freq()

set CPU freq to 60MHz

pyb.freq(60000000)

stop CPU, waiting for external interrupt

pyb.stop()

The MicroPython pyboard

The MicroPython pyboard is a compact
electronic circuit board that runs
MicroPython on the bare metal, giving
you a low-level Python operating system
that can be used to control all kinds of
electronic projects.

MicroPython is packed full of advanced
features such as an interactive prompt,
arbitrary precision integers, closures, list
comprehension, generators, exception
handling and more. Yet it is compact
enough to fit and run within just 256k of
code space and 16k of RAM.

MicroPython aims to be as compatible
with normal Python as possible to allow
you to transfer code with ease from the
desktop to a microcontroller or
embedded system.

The pyboard LCD160CR Colour Display with resistive touch

Powered by the original pyboard v1.1 for you to play with.
You can connect the Display to the left or the right side next to the pyboard.

Touch the display to see the next demo and how intensely the CPU is used for this demo.
How many frames per second are possible is shown as well.

• controlled with intelligence and optimised for Python programming
• integrated touch controller
• low RAM footprint
• heapless library is integrated in MicroPython

The MicroPython pyboard lite

For low power applications in the IoT
world George Robotics developed
the MicroPython pyboard lite.
Having a board full compartible with
the existing high performance
pyboard.

MicroPython Colour OLED

• Colour OLED with optimised interface for all
pyboards

• same MicroPython experience for Low
Power applications

• low RAM footprint
• heapless library is integrated in MicroPython
• four Buttons
• power optimised
• optimised for python programming
• dynamic power consumption
• no background illumination
• power scales with number of bright pixels
• power consumption 10 mA to 100 mA

(max brightness)

Who is Damien George?

Damien was born in Melbourne,
Australia, and has been
programming and playing with
electronic circuits since primary
school.
He completed a Bachelor of
Engineering and Bachelor of
Science at the University of
Melbourne, and then went on to
complete a PhD in theoretical
physics.

During his studies he participated
in the international Robocup
competition, programming
autonomous robots to play soccer.
He wrote embedded software for
scripted behavioural control and
motion, as well as building parts of
the hardware. He has since
continued in this area, building
robots, a CNC machine, and writing
embedded software for many
microcontrollers.

He worked professionally as a
theoretical physicist for 6 years, on
various topics including cosmology
and the Higgs boson.
He then went on to develop
MicroPython and ran two very
successful Kickstarter campaigns
around this microcontroller
language.
He now works full-time maintaining
the MicroPython code-base and
ecosystem.

Is MicroPython fully comparable to Python 3.4?

MicroPython has exactly the same grammar (syntax) as Python version 3. This means that the way you write Python code is
exactly the same in MicroPython (for loops, function definitions, classes, list comprehension, etc). Scripts that compile in normal
Python will compile in MicroPython, and vice versa.

MicroPython does not at the moment implement all of Python's standard libraries. Some Python standard libraries are written in
C and need to be re-written to work with MicroPython. Ultimately, not all Python libraries will be fully supported because they
are not feasible to run on a microcontroller, either because the functionality is not available on the microcontroller, or because
they take too much memory.

Hardware that runs MicroPython

• George Robotics:
MicroPython pyboard and MicroPython pyboard lite

• Adafruit: Feather M0 Express

• BBC:MicroBit

• Digi: XBee Cellular LTE Cat 1

• OpenMV: Cam M7 and Cam M4

http://micropython.org/live/

http://micropython.org/unicorn/

A MicroPython pyboard is connected to the internet for you to play with!
Scan the QR-code and see for yourself

Use MicroPython online:
Write a script, paste some code or try a demo!

• ST:
WiFi SPWF04

NUCLEO-F401RE
NUCLEO-F429ZI
NUCLEO-F446EI
NUCLEO-F767ZI

STM32F429I-DISCO
STM32F746G-DISCO

MicroPython – Python for Microcontrollers

© 2014 – 2017 George Robotics Ltd. for EuroPython 2017

The Evolution of MicroPython

2013

2014

2015

2016

2017

2018

