
Salting things up in the
Devops’ World

Things just got real

whoami
● Juan Manuel Santos
● Team Leader / Principal Technical Support Engineer @ Red Hat
● Organizer of sysarmy / nerdear.la

● Using Salt for a couple of years now, no regrets.
● Or all regrets.

Disclaimer
● I am just a user.
● I do not develop Salt, although I do annoy the team on IRC.
● Only had 72 hours to prepare this.

Why Salt?
● Configuration Management System
● Like Puppet / Chef / Ansible (only better ;)
● Python / YAML / Jinja
● Relatively easy to understand.
● Extremely powerful.
● Allows “root-less” operation (via SSH).

Previously...
● https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world

● Master / minion
● States / highstates
● Matching
● Grains / Pillar
● Unfortunately, still no Python 3 support:

○ https://github.com/saltstack/salt/issues/11995

https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world
https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world
https://github.com/saltstack/salt/issues/11995
https://github.com/saltstack/salt/issues/11995

Salt Mine
● Collect arbitrary data on the minions. Ship it to the master.
● Only the most recent data is maintained.
● Data is made available for all minions.

● Grains?
● Mine data is more updated. Grains are mainly static (can be updated

manually though).
● If minions need data from other (slower) minions, the mine caches it. It is at

least mine-interval fresh.

Salt Mine
● Mine can be populated by either:

○ Pillar
○ Minion’s configuration file

● In the case of salt-ssh:
○ Roster data
○ Pillar
○ Master configuration

Salt Mine - example
/srv/pillar/top.sls:
base:
 'G@roles:web':
 - web

/srv/pillar/web.sls:
mine_functions:
 network.ip_addrs: [eth0]

/etc/salt/minion.d/mine.conf:
mine_interval: 5

Salt Mine - example
/srv/salt/haproxy.sls:
haproxy_config:
file.managed:
 - name: /etc/haproxy/config
 - source: salt://haproxy_config
 - template: jinja

/srv/salt/haproxy_config:
<...file contents snipped...>
{% for server, addrs in salt['mine.get']('roles:web', 'network.ip_addrs', expr_form='grain') | dictsort() %}
server {{ server }} {{ addrs[0] }}:80 check
{% endfor %}
<...file contents snipped...>

Topologies
● Most common topology:

○ Master → Minion(sssss)

● Alternative topologies?
● Moar masters?
● Segregation?

Topologies

Syndic Node
● Intermediate node type, special passthrough one.
● Controls a given set of lower level minions.
● Two daemons running: salt-syndic & salt-master (optionally but

recommended, a salt-minion too).

● salt-syndic receives ‘orders’ from the master of masters.
● salt-syndic relays those orders to the local master.
● salt-master gets the ‘orders’ and relays them to the lower minions.
● The Syndic node is now a master of minions.

Syndic Node
Salt Master

(master of masters)

Salt Syndic/Master
(master of minions)Salt Minion Salt Syndic/Master

(master of minions)

Salt Syndic/Master
(master of minions)

Salt Minion

Salt Minion Salt Minion Salt Minion

Salt MinionSalt Minion

Syndic Node - configuration
● On the Syndic node:

/etc/salt/master
syndic_master: 10.10.0.1 # may be either an IP address or a hostname

/etc/salt/minion
id is shared by the salt-syndic daemon and a possible salt-minion daemon
on the Syndic node
id: my_syndic

● On the master node:

/etc/salt/master
order_masters: True

Syndic Node - running it
● On the Syndic node:

○ salt-syndic

● On the master node:
○ salt-key -A my_syndic

Syndic Node
● Different syndics per environment (production, development, QA, etc).
● Different syndics to comply with InfoSec standards.
● We can even do multimaster:

○ https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html
https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

The Event System
● Track events.
● That’s it? No.
● Events can be acted upon.
● The Event System is at the base of many other subsystems.

● The event bus is a ZeroMQ PUB interface.
● Every event has a tag.
● Every event has a data structure.

The Event System
● Viewing events:

salt-run state.event pretty=True

● Sending events to the master:

salt-call event.send 'myevent/mytag/success' '{success: True, message: "It works!"}'

● Events can also be sent from Python code.

The Event System
● If watching the event bus, this shows up:

salt/job/20160717180356279472/ret/gantrithor {
 "_stamp": "2016-07-17T21:03:56.280813",
 [...]
 "fun": "event.send",
 "fun_args": [
 "myevent/mytag/success",
 "{success: True, message: \"It works!\"}"
],
 "id": "minion_id",
 [...]
}

State (Execution) modules vs Runner modules
● Execution modules run on the targeted minions.
● Runner modules run on the master.
● They can be either asynchronous or synchronous.
● Added via runner_dirs configuration variable in /etc/salt/master.
● Runner modules can be written in pure Python code.
● Convenience: any print statements will generate events.

State (Execution) modules vs Runner modules
def a_runner(outputter=None, display_progress=False):
 print('Hello world')
 …

Event fired at Tue Jan 13 15:26:45 2015

Tag: salt/run/20150113152644070246/print
Data:
{'_stamp': '2015-01-13T15:26:45.078707',
 'data': 'hello',
 'outputter': 'pprint'}

State (Execution) modules vs Runner modules
● You don’t have to forcefully write runner modules.
● Full list: https://docs.saltstack.com/en/latest/ref/runners/all/index.html

https://docs.saltstack.com/en/latest/ref/runners/all/index.html

Beacons
● Like in the picture, Salt Beacons serve as a signal.
● Beacons use the Salt Event System to monitor things outside Salt.
● Send notifications (an event) when something changes.
● Are configured via the minion’s configuration file.

● inotify anyone?
● In fact...

Beacons - examples
● inotify

cat /etc/salt/minion.d/beacons.conf
beacons:

inotify:
/etc/resolv.conf:

auto_add: True
interval: 30

[...]

Beacons - examples
● Process

cat /etc/salt/minion.d/beacons.conf
beacons:

[...]
service:

process_name:
onchangeonly: True

interval: 120

Beacons - examples
● Memory usage
● Disk usage
● System load
● Network settings
● [...]
● Your own

https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons

https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons
https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons

Salt Reactor

Salt Reactor
● Its job is to “react” (not JS :)
● Trigger actions in response to an event
● So it needs the event system
● Actions → states!
● In reality:

○ *Something happened* → Event → Reactor → Action (state)

● Reactors are defined in the master’s configuration file.

Salt Reactor - associating events to states
● In the master’s configuration file:

reactor: # Master config section "reactor"
 - 'salt/minion/*/start': # Match tag "salt/minion/*/start"
 - /srv/reactor/start.sls # Things to do when a minion starts
 - /srv/reactor/monitor.sls # Other things to do

 - 'salt/cloud/*/destroyed': # Globs can be used to match tags
 - /srv/reactor/destroy/*.sls # Globs can be used to match file names

 - 'myevent/custom/event/tag': # React to custom event tags
 - salt://reactor/mycustom.sls # Reactor files can come from the salt fileserver

Salt Reactor - Caveats
● State system in the Reactor is limited.
● When compared to the normal state system, things will be missing.
● Grains and pillar are unavailable inside the reactor subsystem.
● Plus, reactor sls are processed sequentially and handled over to a pool of

worker threads.
● TL;DR: do not handle logic in reactor states

○ Use them for matching (‘Which minions? Which states?’).
○ Call normal Salt states instead and handle the logic there.
○ This is due to a ‘disconnect’ between the reactor & master engines (different namespaces).

Salt Reactor - associating events to states
 - 'myevent/custom/event/tag': # React to custom event tags
 - salt://reactor/mycustom.sls # Reactor files can come from the salt fileserver

/srv/salt/reactor/mycustom.sls
{% if data['id'] == 'mysql1' %}
state_run:
 local.state.sls:
 - tgt: mysql1
 - arg:
 - a_long_running_and_complex_state
{% endif %}

Salt Reactor - full example
● Need to have minions’ keys automatically accepted.

/etc/salt/master.d/reactor.conf:
reactor:
 - 'salt/auth':
 - /srv/reactor/auth-pending.sls
 - 'salt/minion/nice*/start':
 - /srv/reactor/auth-complete.sls

Salt Reactor - full example
/srv/reactor/auth-pending.sls:
{# Nice server failed to authenticate -- remove accepted key #}
{% if not data['result'] and data['id'].startswith('nice') %}
minion_remove:
 wheel.key.delete:
 - match: {{ data['id'] }}

minion_rejoin:
 local.cmd.run:
 - tgt: salt-master.domain.tld
 - arg:
 - ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "{{ data['id'] }}" 'sleep
10 && /etc/init.d/salt-minion restart'
{% endif %}
[...]

Salt Reactor - full example
[...]

{# Nice server is sending new key -- accept this key #}
{% if 'act' in data and data['act'] == 'pend' and data['id'].startswith(nice') %}
minion_add:
 wheel.key.accept:
 - match: {{ data['id'] }}
{% endif %}

/srv/reactor/auth-complete.sls:
{# When a Nice server connects, run state.apply. #}
highstate_run:
 local.state.apply:
 - tgt: {{ data['id'] }}

Salt API
● REST API allowing to send commands to a running Salt master server.
● Supports encryption.
● Supports authentication.
● Authentication provided via Salt’s External Authentication System.
● Controlled by the salt-api daemon.

Salt API - example
curl -i saltmaster:8000/minions/minion-id

GET /minions/minion-id HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

HTTP/1.1 200 OK
Content-Length: 129005
Content-Type: application/x-yaml

return:
- minion-id:
 Grains.items:
 ...

Salt API
● /
● /login
● /logout
● /minions
● /jobs
● /run
● /events
● /hook
● /keys
● /ws
● /stats

Salt API - /hook
● Generic webhook entry point.
● Fires events on Salt’s event bus.
● Data is passed as-is to an event.
● Authentication can be explicitly disabled here (think legacy apps).
● This does not mean you can make do without security!

Putting them all together

Recapping
● Events
● Beacons
● Reactor
● API

Recapping

Salt Event System

Salt States
(SLS)

Beacons

Salt API

Salt Reactor

Recapping
● With great responsibility comes great power.
● If configured properly, Salt can allow for full control of an infrastructure.
● Don’t fear the power; beware of the security risks though.

Possibilities
● Self healing your applications / systems.
● The endless CI cycle of push → build → test → deploy
● Scaling:

○ Both ways (growing and shrinking the environment)
○ Provisioning required.

● Keep environments consistent: react immediately upon changes.

Docs
● https://docs.saltstack.com/en/latest/
● #salt @ irc.freenode.net

https://docs.saltstack.com/en/latest/
https://docs.saltstack.com/en/latest/

Q&A

● Twitter: @godlike64
● Freenode: godlike

Thank you!

