Salting things up in the
Devops’ World

Things just got real

whoami

Juan Manuel Santos
Team Leader / Principal Technical Support Engineer @ Red Hat
Organizer of sysarmy / nerdear.la

Using Salt for a couple of years now, no regrets.
Or all regrets.

@ EUROPYTHON

Disclaimer

e |am justa user.
e | do not develop Salt, although | do annoy the team on IRC.
e Only had 72 hours to prepare this.

@ e

Why Salt?

Configuration Management System

Like Puppet / Chef/ Ansible (only better ;)
Python / YAML / Jinja

Relatively easy to understand.

Extremely powerful.

Allows “root-less” operation (via SSH).

@

EUROPYTHON
2016 =

Previously...

https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world

Master / minion
States / highstates
Matching

Grains / Pillar

Unfortunately, still no Python 3 support:
o https://github.com/saltstack/salt/issues/11995

2

EUROPYTHON
2006 =

https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world
https://ep2016.europython.eu/conference/talks/salting-things-up-in-the-sysadmins-world
https://github.com/saltstack/salt/issues/11995
https://github.com/saltstack/salt/issues/11995

Salt Mine

Collect arbitrary data on the minions. Ship it to the master.
Only the most recent data is maintained.
Data is made available for all minions.

Grains?

Mine data is more updated. Grains are mainly static (can be updated
manually though).

If minions need data from other (slower) minions, the mine caches it. It is at
least mine-interval fresh.

@ EUROPYTHON

Salt Mine

e Mine can be populated by either:
o Pillar
o Minion’s configuration file

e |n the case of salt-ssh:

o Roster data
o Pillar
o Master configuration

@ e

Salt Mine - example

/srv/pillar/top.sls:
base:
'G@roles:web':
- web

/srv/pillar/web.sls:
mine functions:

network.ip addrs: [ethO]

/etc/salt/minion.d/mine.conf:

mine interval: 5

@ %IRBOPWHON

Salt Mine - example

/srv/salt/haproxy.sls:

haproxy config:

file.managed:
- name: /etc/haproxy/config
- source: salt://haproxy config
- template: jinja

/srv/salt/haproxy config:

<...file contents snipped...>

{% for server, addrs in salt['mine.get'] ('roles:web', 'network.ip addrs', expr form='grain') | dictsort() %}
server {{ server }} {{ addrs[0] }}:80 check

{%$ endfor %}

<...file contents snipped...>

@ ;g&oww

Most common topology:

o Master — Minion(sssss)

Alternative topologies?
Moar masters?
Segregation?

Topologies

@

EUROPYTHON
2016 =

Topologies

WHAT IF WE TRIED
MORE POWER?

/

@ %IRBOPYTHON

Syndic Node

Intermediate node type, special passthrough one.

Controls a given set of lower level minions.

Two daemons running: salt-syndic & salt-master (optionally but
recommended, a salt-minion t0o0).

salt-syndic receives ‘orders’ from the master of masters.
salt-syndic relays those orders to the local master.

salt-master gets the ‘orders’ and relays them to the lower minions.
The Syndic node is now a master of minions.

@ EUROPYTHON

Syndic Node

Salt Master
(master of masters)

Salt Minion

Salt Minion

Salt Syndic/Master
(master of minions)

Salt Syndic/Master
(master of minions)

Y

.

Salt Minion

Salt Minion Salt Minion

Salt Syndic/Master
(master of minions)

/\

Salt Minion

Salt Minion

's%?.

EUROPYTHON
2016

Syndic Node - configuration

On the Syndic node:

/etc/salt/master
syndic master: 10.10.0.1 # may be either an IP address or a hostname

/etc/salt/minion
id is shared by the salt-syndic daemon and a possible salt-minion daemon

on the Syndic node
id: my syndic

On the master node:

/etc/salt/master
order masters: True

@ %IRBOPYTHON

Syndic Node - running it

e On the Syndic node:

o salt-syndic

e On the master node:
o salt-key -A my_syndic

@ ;gIR{)OPYTHON

Syndic Node

e Different syndics per environment (production, development, QA, etc).
e Different syndics to comply with InfoSec standards.
e \We can even do multimaster:

o https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

@ EUROPYTHON

https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html
https://docs.saltstack.com/en/latest/topics/tutorials/multimaster.html

The Event System

Track events.

That’s it? No.

Events can be acted upon.

The Event System is at the base of many other subsystems.

The event bus is a ZeroMQ PUB interface.
Every event has a tag.
Every event has a data structure.

@

EUROPYTHON
2016 =

The Event System
Viewing events:

salt-run state.event pretty=True

Sending events to the master:

salt-call event.send 'myevent/mytag/success' '{success: True, message: "It works!"}'

Events can also be sent from Python code.

'z’ ;gIR{)OPYTHON

The Event System

If watching the event bus, this shows up:

salt/job/20160717180356279472/ret/gantrithor {
" stamp": "2016-07-17T21:03:56.280813",
[...]
"fun": "event.send",
"fun args": [
"myevent/mytag/success",
"{success: True, message: \"It works!\"}"
] 14
"id": "minion id",

[...]

2

EUROPYTHON
2016

State (Execution) modules vs Runner modules

Execution modules run on the targeted minions.

Runner modules run on the master.

They can be either asynchronous or synchronous.

Added via runner _dirs configuration variable in /etc/salt/master.
Runner modules can be written in pure Python code.
Convenience: any print statements will generate events.

@ EUROPYTHON

State (Execution) modules vs Runner modules

def a runner (outputter=None, display progress=False):
print ('Hello world'")

Event fired at Tue Jan 13 15:26:45 2015

R I e A A g A b b b b b S i db G G S S i b i i 3

Tag: salt/run/20150113152644070246/print

Data:

{' stamp': '2015-01-13T15:26:45.078707",
'data': 'hello',
'outputter': 'pprint'}

'2} %IFZOP\’NHON

State (Execution) modules vs Runner modules

e You don’t have to forcefully write runner modules.
e Full list: https://docs.saltstack.com/en/latest/ref/runners/all/index.html

@ ;gIR{)OPYTHON

https://docs.saltstack.com/en/latest/ref/runners/all/index.html

@ %IRBOPYTHON

Beacons

Like in the picture, Salt Beacons serve as a signal.

Beacons use the Salt Event System to monitor things outside Salt.

Send notifications (an event) when something changes.
Are configured via the minion’s configuration file.

inotify anyone?
In fact...

2

EUROPYTHON
2016 =

Beacons - examples

e inotify

cat /etc/salt/minion.d/beacons.conf
beacons:
inotify:
/etc/resolv.conf:
auto_add: True
interval: 30

[...]

@ ;gIRBOP\’THON

Beacons - examples

e Process

cat /etc/salt/minion.d/beacons.conf
beacons:
[...]
service:
process name:
onchangeonly: True
interval: 120

@ ;gIRBOP\’THON

Beacons - examples

Memory usage
Disk usage
System load
Network settings

[...]

Your own

https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons

o

https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons
https://docs.saltstack.com/en/latest/ref/beacons/all/index.html#all-salt-beacons

Salt Reactor

@ Lo

Salt Reactor

Its job is to “react” (not JS :)

Trigger actions in response to an event
So it needs the event system

Actions — states!

In reality:
o *Something happened* — Event — Reactor — Action (state)

Reactors are defined in the master’s configuration file.

2

EUROPYTHON
2016 =

Salt Reactor - associating events to states

In the master’s configuration file:

reactor:

'salt/minion/*/start':
- /srv/reactor/start.sls
- /srv/reactor/monitor.sls

'salt/cloud/*/destroyed':
- /srv/reactor/destroy/*.sls

'myevent/custom/event/tag’':
- salt://reactor/mycustom.sls

H o %

=

Master config section "reactor"
Match tag "salt/minion/*/start"
Things to do when a minion starts
Other things to do

Globs can be used to match tags
Globs can be used to match file names

React to custom event tags
Reactor files can come from the salt fileserver

2

EUROPYTHON
2016

Salt Reactor - Caveats

State system in the Reactor is limited.

When compared to the normal state system, things will be missing.
Grains and pillar are unavailable inside the reactor subsystem.

Plus, reactor sls are processed sequentially and handled over to a pool of
worker threads.

TL;DR: do not handle logic in reactor states
o Use them for matching (‘Which minions? Which states?’).
o Call normal Salt states instead and handle the logic there.
o This is due to a ‘disconnect’ between the reactor & master engines (different namespaces).

o

Salt Reactor - associating events to states

- 'myevent/custom/event/tag’':
- salt://reactor/mycustom.sls

/srv/salt/reactor/mycustom.sls
{% if data['id'] == 'mysqgll' %}
state run:
local.state.sls:
- tgt: mysqgll
- arg:

React to custom event tags
Reactor files can come from the salt fileserver

- a_long running and complex state

{% endif %}

2

EUROPYTHON
2016

Salt Reactor - full example

e Need to have minions’ keys automatically accepted.

/etc/salt/master.d/reactor.conf:
reactor:
- 'salt/auth':
- /srv/reactor/auth-pending.sls
- 'salt/minion/nice*/start':
- /srv/reactor/auth-complete.sls

@ %IRBOPYTHON

Salt Reactor - full example

/srv/reactor/auth-pending.sls:

{# Nice server failed to authenticate -- remove accepted key #}
{%$ 1f not data['result'] and data['id'].startswith('nice') %}

minion remove:
wheel.key.delete:
- match: {{ data['id'] }}

minion rejoin:
local.cmd.run:
- tgt: salt-master.domain.tld
- arg:
- ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no "{{ data['id'] }}" 'sleep
10 && /etc/init.d/salt-minion restart'
{% endif %}

[...]

@ %IRBOPWHON

Salt Reactor - full example

{# Nice server 1is sending new key —-- accept this key #}
{$ 1f 'act' in data and data['act'] == 'pend' and datal['id'].startswith(nice') %}

minion add:
wheel.key.accept:
- match: {{ data['id'] }}
{%$ endif %}

/srv/reactor/auth-complete.sls:
{# When a Nice server connects, run state.apply. #}
highstate run:
local.state.apply:
- tgt: {{ data['id'] }}

@ %IRBOPWHON

Salt API

REST API allowing to send commands to a running Salt master server.
Supports encryption.

Supports authentication.

Authentication provided via Salt’'s External Authentication System.
Controlled by the salt-api daemon.

@

EUROPYTHON
2016 =

Salt API - example

curl -i saltmaster:8000/minions/minion-id

GET /minions/minion-id HTTP/1.1
Host: localhost:8000
Accept: application/x-yaml

HTTP/1.1 200 OK
Content-Length: 129005
Content-Type: application/x-yaml

return:

- minion-id:

Grains.items:

@ ;g&oww

/
/login
/logout
/minions
/jobs
/run
/events
/hook
/keys
/WS
/stats

Salt API

2

EUROPYTHON
2016

Salt API - /hook

Generic webhook entry point.

Fires events on Salt’s event bus.

Data is passed as-is to an event.

Authentication can be explicitly disabled here (think legacy apps).
This does not mean you can make do without security!

@

EUROPYTHON
2016 =

Putting them all together

@ %IRBOPWON

Events
Beacons
Reactor
API

Recapping

2

EUROPYTHON
2016

Beacons

Recapping

Salt States
(SLS)

Salt API

Salt Reactor

Salt Event System

's%?.

EUROPYTHON
2016

Recapping
e With great responsibility comes great power.

e If configured properly, Salt can allow for full control of an infrastructure.
e Don’t fear the power; beware of the security risks though.

o

Possibilities

Self healing your applications / systems.
The endless CI cycle of push — build — test — deploy
Scaling:

o Both ways (growing and shrinking the environment)

o Provisioning required.

Keep environments consistent: react immediately upon changes.

o

Docs

e https://docs.saltstack.com/en/latest/
e #salt @ irc.freenode.net

L

https://docs.saltstack.com/en/latest/
https://docs.saltstack.com/en/latest/

Q&A

e Twitter: @godlike64
e Freenode: godlike %EUROP““ON

206

Thank you!

