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Motivation
I	model	'explosions	in	space'
or:	the	effects	of	including	general	relativity	in	models	of
Type	I	X-ray	bursts	in	neutron	star	oceans





Motivation
Fed	up	of	reading	about	exciting	codes,	only	to	find
they're	not	open	source
they	have	next	to	no	documentation
questionable	approaches	to	testing

This	is	not	good	science!



Overview
What	is	software	sustainability	(and	why	should	I	care)?
Why	scientific	software	is	different
Scientific	software	development	workflow
Version	control
Testing
Continuous	integration	&	code	coverage
Documentation
Distribution

Conclusions



What	is	software	sustainability
(and	why	should	I	care)?
Will	my	code	still	work	in	5/10/20	years'	time?
Can	it	be	found?
Can	it	be	run?

If	not,	harms	future	scientific	progress



What	makes	scientific	software
different?

Built	to	investigate	complex,	unknown	phenomena
Often	developed	over	long	periods	of	time
Can	involve	lots	of	collaboration
Built	by	scientists,	not	software	engineers

	
Turbulence	modelled	by	Dedalus

http://dedalus-project.org/


The	Scientific	Method
In	experimental	science,	results	are	not	trusted	unless
follow	scientific	method:

testing	of	apparatus
documentation	of	method

Demonstrate	experiment's	results	are	accurate,
reproducible	and	reliable



The	Scientific	Method
In	computational	science,	we	are	doing	experiments	with
the	computer	as	our	apparatus
We	should	also	follow	scientific	method	and	not	trust
results	from	codes	without	proper	testing	or
documentation



Source

https://www.timeshighereducation.com/news/fellowships-succeed-getting-female-researchers-back-scholarship


PhD	Comics

http://www.phdcomics.com/


Development	workflow
Goal:	implement	sustainable	practices	throughout
development
Fortunately,	there	are	lots	of	tools	that	will	help	us
automate	things!



Version	control
Keeps	a	log	of	all	changes	to	code
Computational	science	version	of	a	lab	book



Alexander	Graham	Bell's	lab	book	-	Wikimedia

https://upload.wikimedia.org/wikipedia/commons/0/0c/AGBell_Notebook.jpg




Version	control
Aids	collaboration	-	no	overwriting	each	other's	changes
Can	hack	without	fear	-	develop	on	a	branch,	so	no	danger
of	irreversibly	breaking	everything



Testing
Should	not	trust	results	unless
apparatus	&	method	(i.e.	the	software)	that	produced
them	has	been	demonstrated	to	work
any	limitations	(e.g.	numerical	error,	algorithm	choice)
are	understood	and	quantified







Testing
Scientific	codes	can	be	hard	to	test	as	they	are
often	complex
investigate	unknowns

Does	not	mean	we	should	give	up!



Testing:	Step	1
Break	it	down	with	unit	tests
Can't	trust	the	sum	if	the	parts	don't	work
Makes	testing	complex	codes	more	manageable
Make	sure	these	cover	entire	parameter	space	and
check	code	breaks	when	it	should



import unittest 

def squared(x): 
 return x*x 

class test_units(unittest.TestCase): 

    def test_squared(self): 
        self.assertTrue(squared(-5) == 25) 
        self.assertTrue(squared(1e5) == 1e10) 
        self.assertRaises(TypeError, squared, "A string") 



Testing:	Step	2
Build	it	back	up	with	integration	tests
Need	to	check	all	parts	work	together
Can	get	more	difficult	here



Testing:	Step	3
Monitor	development	with	regression	tests
Check	versions	against	each	other
Performance	should	improve	(or	at	least	not	get	worse)
Bonus!	Helps	enforce	backwards	compatibility	for
users



Science-specific	issues
Unknown	behaviour
Use	controls	-	simple	input	data	with	known	solution

Randomness
isolate	random	parts
test	averages,	check	limits,	conservation	of	physical
quantities



data = rand(80,80)                # declare some random data 

def func(a):                       # function to apply to data 
    return a**2 * numpy.sin(a) 

output = func(data)               # calculate & plot some function of random data
plt.imshow(output);  plt.colorbar();   plt.show() 



Input is , so output must be 0 ≤ x ≤ 1

0 ≤ f (x) ≤ sin(1) ≃ 0.841

= f (x) dx ≃ 0.223f (x)
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯

∫
1

0

def test_limits(a): 
    if numpy.all(a >= 0.) and numpy.all(a <= 0.842): return True
    return False

def test_average(a): 
    if numpy.isclose(numpy.average(a), 0.223, rtol=5.e-2): return True 
    return False

if test_limits(output): 
 print('Function output within correct limits') 
else: 
 print('Function output is not within correct limits') 
if test_average(output): 
 print('Function output has correct average') 
else: 
 print('Function output does not have correct average') 

Function output within correct limits 
Function output has correct average



Science-specific	issues
Simulations

convergence	tests	-	does	accuracy	of	solution	improve
with	order	of	algorithm	used?
if	not,	algorithm	may	not	be	implemented	correctly

Numerical	error
use	numpy.isclose	&	numpy.allclose



 # use trapezium rule to find integral of sin x between 0,1 
 hs = numpy.array([1. / (4. * 2.**n) for n in range(8)]) 
 errors = numpy.zeros_like(hs) 

 for i, h in enumerate(hs): 
     xs = numpy.arange(0., 1.+h, h) 
     ys = numpy.sin(xs) 

     # use trapezium rule to approximate integral of sin(x) 
     integral_approx = sum((xs[1:] - xs[:-1]) * 
      0.5 * (ys[1:] + ys[:-1])) 
     errors[i] = -numpy.cos(1) + numpy.cos(0) - integral_approx 

 plt.loglog(hs, errors, 'x', label='Error') 
 plt.plot(hs, 0.1*hs**2, label=r'$h^2$') 
 plt.xlabel(r'$h$'); plt.ylabel('error') 



Continuous	integration	&	code
coverage

Continuous	integration	tools	regularly	run	tests	for	you	&
report	back	results

	&	
Find	out	when	bugs	occur	much	sooner	-	much	easier	to	fix!
Danger:	outdated	tests	almost	as	useless	as	no	tests
If	tests	only	cover	20%	of	code,	why	should	you	trust	the
other	80%?

Code	coverage!	

Travis	CI CircleCI

Codecov

http://travisci.org/
http://circleci.com/
http://codecov.io/






Documentation
Ideal:	someone	else	in	your	field	should	be	able	to	set	up
and	use	your	code	without	extra	help	from	you
Include	comprehensive	installation	instructions
Document	the	code	itself	(sensible	function	&	variable
names,	comments)
User	guide	with	examples	to	demonstrate	usage
jupyter	notebooks	great	for	this

Automate	with	 ,	host	at	Sphinx Read	the	Docs

http://www.sphinx-doc.org/en/stable/
https://readthedocs.org/






Distribution
Make	it	findable
Open	source!	(where	possible)
DOI	e.g.	from	

Reproducible	results	require	a	reproducible	runtime
environment
package	code	in	e.g.	docker	container,	conda
environment,	PyPI

Installation	should	be	as	painless	as	possible
makefiles,	try	to	limit	reliance	on	non-open	source
libraries/material

zenodo

https://zenodo.org/


Conclusions
We	need	to	future-proof	our	software
Apply	the	scientific	method	to	software	development
Only	trust	results	from	codes	that	are

reproducible	(open	source!)
tested
documented

Check	out	the	SSI	website	 	for	morewww.software.ac.uk

https://www.software.ac.uk/

