
Lee Sheng
lsheng@yelp.com

@bogosort

Teeing up Python
Code Golf

Yelp’s Mission
Connecting people with great

local businesses.

Engineer at in London building
distributed systems.

Previous stints:

About Me

WARNING
● Not actually a golf player.

● Monospace type ahead!

● Not talking about traditional “code golfing”

Code Golfing is minimizing the number of strokes in each
block of code.

Code Golfing

“brevity is the soul of wit” - @WilliamShakespeare

Concise code requires less cognitive load to understand
the intent by avoiding implementation errata.

It will take strokes off your code
while increasing clarity.

Snake Oil1 Benefits

1: No pythons were harmed in the
making of this talk.

+1: keywords, variable names, each
operator (including square brackets)

What are Strokes?

+0: whitespace, dots, commas,
parentheses, quotes, colons, and
closing braces/brackets

Effectively counting units of
information present.

>>> import this

Why even?

The Zen of Python, by Tim Peters (abridged)

Beautiful is better than ugly.
Simple is better than complex.
If the implementation is easy to explain, it may be a
good idea.

to_mail = "UNKNOWN"
if "address" in my_contact:
 to_mail = my_contact["address"]

Ever written code like this?

Try using a default
to_mail = my_contact.get("address", "UNKNOWN")

to_maill =2 "UNKNOWN3"
if4 "address5" in6 my_contact7:
 to_mail8 =9 my_contact10[11"address12"] # 12 strokes

Counting up the strokes

Try using a default
to_maill =2 my_contact3.get4("address5", "UNKNOWN6") # 6 strokes

to_mail = "UNKNOWN"

if "address" in my_contact:

 to_mail = my_contact["address"]

to_mail = my_contact.get("address", "UNKNOWN")

strokes -= 6

Visual Diff

counts = {}
if item not in counts:
 counts[item] = 0
counts[item] += 1

If only there were a better way!

Initializing dict values

counts = {}
if item not in counts:
 counts[item] = 0
counts[item] += 1 # 18 strokes

Why not defaultdict?
from collections import defaultdict # 4 extra strokes per file

counts = defaultdict(int)
counts[item] += 1 # 13 strokes (including overhead)

Initializing dict values

infile = open('myfile.txt', 'r')
for line in infile:
 print(line)
infile.close()

Why bother explicitly cleaning up?

Cleaning Up Resources

infile = open('myfile.txt', 'r')
for line in infile:
 print(line)
infile.close() # 13 strokes

Let’s do this automagically
with open('myfile.txt', 'r') as infile:
 for line in infile:
 print(line) # 12 strokes

Context Managers

try:
 infile = open('myfile.txt', 'r')
 raise Exception()
finally:
 infile.close() # 12 strokes

Exception Handling

try-finally already baked in by default!
with open('myfile.txt', 'r') as infile:
 raise Exception() # 9 strokes

To implement make any class into a context manager, “simply” implement
the __enter__ and __exit__ methods:
class Tag():
 """Poorly adds html tags"""
 def __init__(self, name):
 self.name = name
 def __enter__(self):
 print("<%s>" % self.name)
 def __exit__(self, *args):
 print("</%s>" % self.name)
Too much boilerplate, we can do better!

“Simple” implementation

from contextlib import contextmanager
@contextmanager
def tag(name):
 """Poorly adds html tags"""
 print("<%s>" % name)
 yield # Do the actual work here
 print("</%s>" % name)

With enough space to spare, here’s an example:
with tag("h1"):
 print("foo")

Let’s decorate with @contextmanager

def cook(food):
 return
cook() =>

Functions aren’t scary

cook(x)
Lambdas are just functions:
lambda food:

map([, ,], cook)
=> [, ,]

Quick Functions Primer

filter([, ,], isVegetarian)
=> [,]

reduce([,], eat)
=>

Stolen from a tweet from @steveluscher

https://twitter.com/steveluscher/status/741089564329054208

Goofus and Gallant

Goofus thinks iteratively, focusing on how to compute the
result.
Goofus has mastered looping over data to compute results.

Goofus and Gallant explore functions

Gallant thinks functionally, focusing on what the result is.
Gallant has mastered composing functions to compute results.

Goofus iterates over nums, appending doubles of values:
double_nums = []
for n in nums:
 double_nums.append(n * 2)
12 strokes

Goofus and Gallant explore map

Gallant uses map to compute doubles:
double_nums = list(map(lambda x: x * 2, nums))
10 strokes

Goofus iterates over nums, adding to the total:
total = 0
for n in nums:
 total += n
10 strokes

Goofus and Gallant explore reduce

Gallant uses a reducer:
total = reduce(lambda x, y: x + y, nums)
10 strokes

Goofus iterates over nums, appending only evens:
only_evens = []
for n in nums:
 if n % 2 == 0:
 only_evens.append(n)
16 strokes

Goofus and Gallant explore filters

Gallant filters nums for evens:
only_evens = list(filter(lambda x: x % 2 == 0, nums))
12 strokes

Comprehensions are a more natural way to construct lists (and dicts).

result = []
for item in things:
 if condition(item):
 result.append(transform(item))
14 strokes

Comprehending Comprehensions

result = [transform(item) for item in things if condition(item)]
12 strokes

result = []
for item in things:
 if condition(item):
 result.append(transform(item))

result = [transform(item) for item in things if condition(item)]
strokes -= 2

Comprehensions Deconstructed

Better Mapping with Comprehensions

Gallant uses map to produce doubles:
double_nums = list(map(lambda x: x * 2, nums))
10 strokes

Billy Mays uses a comprehension:
double_nums = [x * 2 for x in nums]
10 strokes

Better Filtering with Comprehensions

Gallant filters nums for evens:
only_evens = list(filter(lambda x: x % 2 == 0, nums))
12 strokes

Billy Mays uses a comprehension:
only_evens = [x for x in nums if x % 2 == 0]
14 strokes

Better Reduces with Comprehensions

Gallant uses a reducer:
total = reduce(lambda x, y: x+y, l)
10 strokes

Shamwow guy uses the sum function:
total = sum(nums)
4 strokes

Better dicts with Comprehensions

Goofus iterates, as that’s what he knows:
num_to_letters = {}
for x in range(0, 26):
 num_to_letters[x] = chr(97 + x)
17 strokes

Billy Mays uses a comprehension:
num_to_letters = {x: chr(97 + x) for x in range(0, 26)}
14 strokes

slides

Where can conciseness help?

screens whiteboards

Quick Whiteboarding Tip
Instead start coding from the upper right, and
you can fit 46x11 characters.

If you start coding here,
you’ll be awkwardly coding
on a 26x6 screen.

● Stroke reduction (making code more concise) reduces
the cognitive load to understand code.

● Python enables doing more with less.

● For common operations, there’s probably already a
builtin or library.

Final Takeaways

“Je n'ai fait celle-ci
plus longue que parce que
je n'ai pas eu le loisir
de la faire plus courte.”

"I apologize for the
length of this
presentation, but I didn't
have time to make it
shorter."

- @BlaisePascal

www.yelp.com/careers/

We're Hiring!

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

talk.exit(“That’s all folks!”)

