
1

There Should be One Obvious Way to
Bring Python into Production

Sebastian Neubauer
sebastian.neubauer@blue-yonder.com
@sebineubauer

• What are we talking about and why?
• Delivery pipeline
• Dependencies
• Packaging

• What is the current state?
• A walk through the different possibilities
• Summarizing all the pros and cons

• Can we find a better solution?
• How does the future look like?
• Discussion: what could the „one obvious way“ be?

2

Agenda

What are we talking
about and why?

3

4

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

5

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

6

Development
Required:
• Fast iteration cycles, fast changes
• Automated tests can be executed

Nice to have:
• Production like local environment

Risks:
• „Works on my machine!“
• Dirty working directory

@sebineubauer

7

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

8

Building/Packaging
Required:
• Build once, use everywhere
• Possibility to compile for the target systems
• Build uniquely versioned, signed packages

Nice to have:
• Upload to an artifact repository

Risks:
• Misconfiguration of the build environment

@sebineubauer

9

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

10

Testing
Required:
• Automated
• Near production like conditions
• Reproducible conditions
• Minimal changes for testing reasons

Nice to have:
• Fast feedback
• Running after each commit on all branches

Risks:
• the tests test the test environment, but not production

@sebineubauer

11

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

12

Staging/QA
Requirement:
• Automated deploy in production like environment
• Nearly no changes for testing purposes

Nice to have
• A real clone of the production system
• Possibility to run A/B tests on that system

Risks:
• outdated, manually maintained setup

@sebineubauer

13

Development

Testing
Building/Packaging

Staging/QA

ProductionDelivery pipeline

@sebineubauer

14

Production
Required:
• No compiler
• No internet
• Health monitoring
Nice to have:
• Automated deploy
• Automatic monitoring
• Automatic self-healing
• Automatic rolling update and roll back
Risks:
• your business is going down…

@sebineubauer

15

Development

Testing
Building/Packaging

Staging/QA

Production

Developer’s Box

Continuous
integration server

Modern cluster
scheduler

Good setup

@sebineubauer

Bad setup

16

Development

Testing
Building/Packaging

Staging/QA

Production

Developer’s Box

Snowflake pet server

@sebineubauer

17

Dependencies

„All shared software components that
need to be present in the correct version
so that the application works correctly“

fictitious definition

@sebineubauer

18

Dependency Hell
Problems:
• Transitive dependencies can have conflicting version

requirements
• Python only knows application „global“ dependencies

(javascript has local dependencies)
• Pip (still) doesn’t have proper dependency resolution (gh

#988 open since 11 Jun 2013, but GSoC 2017 project,
fingers crossed)

• System python dependencies interfere with application
dependencies

@sebineubauer

19

Package management in python
package manager: pip
package format: wheel
• still much confusion around setuptools, distutils, eggs…
• many „best practices“ in stack overflow & co. outdated
• no standard templating for packages: see pyscaffold, versioneer…
• feels like lack of interest in the community…
• but: it has gotten way better in the last years:

• setup.cfg
• setuptools_scm

For details see: https://ep2017.europython.eu/conference/talks/python-
packaging-current-state-and-overview by @webGandi

@sebineubauer

https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
http://twitter.com/webGandi

20

Package manager hell
System dependencies Language dependencies

operating system, libraries language specific libraries, frameworks

yum, apt-get, homebrew, vcpks… pip, npm, conan, cpan, maven, composer,
cargo, godep, gem,…

frequent security updates almost no security updates

„operations“ take care „developers“ take care

root/system wide user space/virtualenv

@sebineubauer

21

Package manager hell
System dependencies Language dependencies

operating system, libraries language specific libraries, frameworks

yum, apt-get, homebrew, vcpks… pip, npm, conan, cpan, maven, composer,
cargo, godep, gem,…

frequent security updates almost no security updates

„infrastructure“ takes care „developers“ take care

root/system wide user space/virtualenv

@sebineubauer

22

Package manager hell

Where does it come from historically?
• disk space and bandwidth expensive
• separation between dev and ops
• single language environments
• rise of open source and sharing culture
• no package manager solved everything

@sebineubauer

What is the current
state?
a walk through the different possibilities

23

24

The classical approach
Development environment:
• building proper python package (e.g. https://github.com/blue-yonder/

pyscaffold)
• get everything somehow working: vagrant, conda, compile yourself…
• pushing source to git

@sebineubauer

https://github.com/blue-yonder/pyscaffold
https://github.com/blue-yonder/pyscaffold

25

The classical approach
On Jenkins:
• building artifacts,
• testing,
• release: packaging (wheels) and publishing to an pypi compatible

artifact repository (artifactory, devpi…)

@sebineubauer

26

The classical approach
In production:
• standard virtualenv and pip
• application gets installed from repo together with dependencies
• OS and system dependencies are maintained separately

@sebineubauer

27

The classical approach
Pro Con

• „standard approch“
• good and supported tooling
• well understood

• dependencies are resolved in production
again and again

• need to build und upload wheels for all
binary packages to repository

• because the dependencies are resolved „at
runtime“, developers must not forget to pin
the dependencies

• python only

@sebineubauer

28

The „conserve virtualenv“ approach

• idea: build a virtualenv, then pack it, ship it and unpack on the target
system

• several similar implementations:
• platter: simple virtualenv and wheels
• pex: new virtualenv implementation, includes executed command
• dh-virtualenv: virtualenvs packaged in debian packages

• done once in build step

@sebineubauer

29

The „conserve virtualenv“ approach
Pro Con

• no resolving of dependencies on target
host

• no dependency to a pypi server
• „push or pull model“ possible, either you

copy the archive to the target, or it pulls
from a repo

• depending on the implementation (e.g.
platter) it integrates well in „standard“
workflow with standard tools

• system packages not included
• need to compile for the exact target system
• no standard repository:

• implement push infrastructure
• implement a repository (e.g. s3)

• python only

@sebineubauer

30

The OS package approach
• idea: package the application as a standard OS package, e.g. debian

package
• this way you can install the application with „apt-get install“ on the

target machines
• deb package building is done once in the build step
• there are some few tools that help you:

• stdeb: build deb packages with one command (can’t get it to work, last commit
2 years ago :face_with_rolling_eyes:)

• dh-virtualenv
• for all dependencies, you either have to make deb packages too, or

you bundle them up (see dh-virtualenv)

@sebineubauer

31

The OS package approach
Pro Con

• integrates well with system maintenance
• just one package manager needed
• standard debian repository

• tooling seems to be very badly maintained
• no tooling for dependency management,

you have to create packages and declare
the dependencies yourself (or use dh-
virtualenv)

• you need a debian repository
• working with deb packages is often:

globally installed by root, not always what
one needs

@sebineubauer

32

The „container as PM“ approach

Developer’s box:
• download a base image
• provision the base image
• develop the application in the container
• commit the scripts for the provisioning and deploy in the container

@sebineubauer

33

On Jenkins:
• build the container image with the application baked in, using the

scripts
• run the tests inside the container
• if all tests pass, upload the image to the registry (artifactory, docker

registry…)

@sebineubauer

The „container as PM“ approach

34

In production:
• let the target hosts pull the image from the registry or push it to the

hosts
• start it

@sebineubauer

The „container as PM“ approach

35

Pro Con

• good understood technology, de-facto
industry standard: schedulers, repositories,
monitoring

• complete decoupling from host OS,
windows, mac, jenkins or coreos in
production, the application runs in the `==`
same environment

• complete environment+application is built
once

• everything in git
• language independent

• security updates on host irrelevant for
application

• without proper processes and tooling, easy
to do it wrong: unapproved software in
production, heartbleed…

• dependency resolution and pypi server still
needed

• chasm between system and language
dependencies still exists, but now in a
container

• doesn’t really reduce complexity

@sebineubauer

The „container as PM“ approach

36

The „next packet manager“ approach
There are many (interesting) other package managers out there:
Conda:
• Python, R, Scala, Java, Javascript, C/ C++, FORTRAN
• also packages system dependencies
• works flawlessly together with pip
• easy to use
• mature
• so far no real on premise repository, but easy to implement

@sebineubauer

37

The „next packet manager“ approach
Nix:
• really interesting concept: purely declarative functional language for

expressing dependencies
• immutable and git like behavior: uninstallation is a well defined

rollback/revert
• NixOS: completely removes the chasm between system and language

dependencies
• language independent
• lazy evaluation: dependencies only get installed if needed
• not production ready yet…I guess…

@sebineubauer

38

The „next packet manager“ approach
Pro Con

• in the end it is a „package manager“
problem, so maybe there is a „next package
manager“ that solves most of the problems

• there are package managers that solve
parts of the problems even today (e.g. get
numeric python packages working on mac
and on windows using conda…)

• a good end to end, language agnostic
package management solution has a huge
potential

• package management is only part of the
problem:
• security updates
• auditing
• same environment for development,

testing and production
• no end to end solution so far
• very hard to get the critical mass needed

that it is a holistic solution for the whole
problem for all languages

@sebineubauer

39

The vendoring approach

• Instead of depending on external libraries, you copy the source code
into your repository

• you don't have any requirements (at least in your language)
• you build just one big application package in one go
• on the target system, you install one package with no dependencies
• slightly similar to the „conserve virtualenv“ approach

@sebineubauer

40

The vendoring approach
Pro Con

• no dependency resolution at all
• easy IDE code discovery
• no dependecy to external repositories
• easy to patch third party libraries

• no dependency resolution at all, everything
needs to be done manually

• hard work to keep it up to date
• easier to patch third party libraries instead

of contributing and wait for release
• dangerous licensing issues
• useless for library development

@sebineubauer

Can we find a better
solution?

41

42

Containers are here to stay, for
many reasons

How does the future look like?

@sebineubauer

43

DevOps is the working mode

How does the future look like?

@sebineubauer

44

Polyglott: the right language
for the job

How does the future look like?

@sebineubauer

45

Open source/sharing of code is
increasing

How does the future look like?

@sebineubauer

46

Automation is a must

How does the future look like?

@sebineubauer

47

After that problem is solved,
„serverless" becomes a thing

How does the future look like?

@sebineubauer

And now a
short

discussion!

48@sebineubauer

Discussion

49

Classical/wheels

Conserve virtualenv

OS Package manager Container

Next package manager
Vendoring

Other??

Q&A

50@sebineubauer

51

Attributions

By BrokenSphere (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
By Rl (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia
Commons

