There Should be One Obvious Way to
Bring Python into Production

Sebastian Neubauer

sebastian.neubauer@blue-yonder.com
@sebineubauer

europython

B suvaor RIMINI BlueYonder

Best decisions, delivered daily

Agenda

- What are we talking about and why?
- Delivery pipeline
- Dependencies
- Packaging
- What is the current state?
- A walk through the different possibilities
- Summarizing all the pros and cons
- Can we find a better solution?
- How does the future look like?
- Discussion: what could the ,one obvious way” be?

2

What are we talking
about and why?

Development

Required:
- Fast iteration cycles, fast changes
- Automated tests can be executed

Nice to have:
- Production like local environment

Risks:
-, Works on my machine
- Dirty working directory

[/}
!

BlueYonder

Best decisions, delivered daily

Building/Packaging

Required:

- Build once, use everywhere

- Possibility to compile for the target systems
- Build uniquely versioned, signed packages

Nice to have:
- Upload to an artifact repository

Risks:
- Misconfiguration of the build environment

BlueYonder
Best

st decisions, delivered daily

@sebineubauer 8

Testing

Required:
Automated
Near production like conditions
Reproducible conditions
Minimal changes for testing reasons

Nice to have:
Fast feedback
Running after each commit on all branches

Risks:
the tests test the test environment, but not production BlueYonder

Best decisions, delivered daily

10

Staging/QA

Requirement:
Automated deploy in production like environment
Nearly no changes for testing purposes

Nice to have
A real clone of the production system
Possibility to run A/B tests on that system

Risks:
outdated, manually maintained setup

BlueYonder

Best decisions, delivered daily
12

Production

Required:
No compiler
No internet
Health monitoring
Nice to have:
Automated deploy
Automatic monitoring
Automatic self-healing
Automatic rolling update and roll back
Risks:
your business is going down...

BlueYonder

Best decisions, delivered daily

14

Dependencies

~All shared software components that
need to be present in the correct version
so that the application works correctly”

fictitious definition

eeeeeeeeeeeeeeeeeeeeeeeeeeee

Dependency Hell

Problems:
Transitive dependencies can have conflicting version
requirements
Python only knows application, global” dependencies
(Javascript has local dependencies)
Pip (still) doesn’t have proper dependency resolution (gh
#988 open since 11 Jun 2013, but GSoC 2017 project,
fingers crossed)
System python dependencies interfere with application
dependencies 5 -9

eeeeeeeeeeeeeeeeeeeeeeeeeeee

Package management in python

package manager: pip
package format: wheel
- still much confusion around setuptools, distutils, eggs...
- many ,best practices” in stack overflow & co. outdated
- no standard templating for packages: see pyscaffold, versioneer...
- feels like lack of interest in the community...
- but: it has gotten way better in the last years:
- setup.cfg
- setuptools_scm
For details see: https://ep2017.europython.eu/conference/talks/python-
packaging-current-state-and-overview by @webGandi

BIueYonde_r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

9

https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
https://ep2017.europython.eu/conference/talks/python-packaging-current-state-and-overview
http://twitter.com/webGandi

Package manager hell

System dependencies Language dependencies

operating system, libraries language specific libraries, frameworks

pip, Npm, conan, cpan, maven, cOmpaoser,

yum, apt-get, homebrew, vcpks... cargo, godep, gem, ...

frequent security updates almost no security updates
soperations” take care ~developers” take care
root/system wide user space/virtualenv
BlueYonder

Best decisions, delivered daily

@sebineubauer 20

Package manager hell

System dependencies _nguage . 2pendencies

[]
~

operating system, librasg

\

yum, aIi)'f'ge’t,mebrew, vcpks -

\a

.

frequent seg@rity updates T rity updates

»infrastructurg takes care ol ~developers” take care

Y

N

ide

-
)
s v -

root/systerftw

user space/virtualenv

BlueYonder

Best decisions, delivered daily

@sebineubauer 21

Package manager hell

Where does it come from historically?
disk space and bandwidth expensive
separation between dev and ops
single language environments
rise of open source and sharing culture
no package manager solved everything

eeeeeeeeeeeeeeeeeeeeeeeeeeee

22

What is the current
state?

a walk through the different possibilities

The classical approach

Development environment:

- building proper python package (e.g. https://github.com/blue-yonder/
pyscaffold)

- get everything somehow working: vagrant, conda, compile yourself...

- pushing source to git

BIueYo'nde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 24

https://github.com/blue-yonder/pyscaffold
https://github.com/blue-yonder/pyscaffold

The classical approach

On Jenkins:

- building artifacts,

- testing,

- release: packaging (wheels) and publishing to an pypi compatible
artifact repository (artifactory, devpi...)

BIueYo'nde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 25

The classical approach

In production:

- standard virtualenv and pip

- application gets installed from repo together with dependencies
- 0OS and system dependencies are maintained separately

BlueYonder
Best decisions, delivered daily

@sebineubauer 26

The classical approach

@]y

- ,standard approch”
- good and supported tooling
- well understood

@sebineubauer

27

- dependencies are resolved in production

again and again

- need to build und upload wheels for all

binary packages to repository

- because the dependencies are resolved , at

runtime’, developers must not forget to pin
the dependencies

- python only

BlueYonder

Best decisions, delivered daily

The ,conserve virtualenv” approach

- idea: build a virtualeny, then pack it, ship it and unpack on the target

system

- several similar implementations:

platter: simple virtualenv and wheels
pex: new virtualenv implementation, includes executed command

dh-virtualenv: virtualenvs packaged in debian packages
- done once in build step

BlueYonder

Best decisions, delivered daily

@sebineubauer)8

The ,conserve virtualenv” approach

- no resolving of dependencies on target - system packages not included

host - need to compile for the exact target system
- no dependency to a pypi server - no standard repository:
- y,push or pull model” possible, either you - implement push infrastructure

copy the archive to the target, or it pulls - implement a repository (e.g. s3)

from arepo - python only

- depending on the implementation (e.qg.
platter) it integrates well in,,standard”
workflow with standard tools

BlueYonder

Best decisions, delivered daily

@sebineubauer 29

The OS package approach

- idea: package the application as a standard OS package, e.g. debian
package

*this way you can install the application with ,,apt-get install® on the
target machines
- deb package building is done once in the build step

- there are some few tools that help you:
- stdeb: build deb packages with one command (can’t get it to work, last commit
2 years ago :face_with_rolling_eyes:)
- dh-virtualenv
- for all dependencies, you either have to make deb packages too, or

you bundle them up (see dh-virtualenv)
BlueYonder

Best decisions, delivered daily

@sebineubauer 30

The OS package approach
e

@]y

- integrates well with system maintenance
- just one package manager needed
- standard debian repository

@sebineubauer

31

- tooling seems to be very badly maintained
- no tooling for dependency management,

you have to create packages and declare
the dependencies yourself (or use dh-
virtualenv)

- you need a debian repository
- working with deb packages is often:

globally installed by root, not always what
one needs

BlueYonder

Best decisions, delivered daily

The,container as PM" approach

Developer’s box:

- download a base image

- provision the base image

- develop the application in the container

- commit the scripts for the provisioning and deploy in the container

BIueYonde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 32

The,container as PM" approach

On Jenkins:

- build the container image with the application baked in, using the
scripts

- run the tests inside the container

- if all tests pass, upload the image to the reqistry (artifactory, docker
reqgistry...)

BIueYonde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 33

The,container as PM" approach

In production:

- let the target hosts pull the image from the registry or push it to the
hosts

- startit

BIueYonde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 34

The,container as PM" approach

- good understood technology, de-facto - security updates on host irrelevant for
industry standard: schedulers, repositories, application
monitoring - without proper processes and tooling, easy
- complete decoupling from host OS, to do it wrong: unapproved software in
windows, mac, jenkins or coreos in production, heartbleed...
production, the application runs in the ==" - dependency resolution and pypi server still
same environment needed
- complete environment+application is built - chasm between system and language
once dependencies still exists, but now in a
- everything in git container
- language independent - doesn’t really reduce complexity
BlueYonder

Best decisions, delivered daily

@sebineubauer 35

The ,next packet manager” approach

There are many (interesting) other package managers out there:
Conda:

- Python, R, Scala, Java, Javascript, C/ C++, FORTRAN

- also packages system dependencies

- works flawlessly together with pip

- easy to use

- mature

- so far no real on premise repository, but easy to implement

BIueYonder

o W Best decsions, delivered dail
@sebineubauer 36 ’

The ,next packet manager” approach

Nix:

- really interesting concept: purely declarative functional language for
expressing dependencies

- immutable and qit like behavior: uninstallation is a well defined
rollback/revert

- NixOS: completely removes the chasm between system and language
dependencies

- language independent

- lazy evaluation: dependencies only get installed if needed

- not production ready yet...l guess...

BIueYonde.r

eeeeeeeeeeeeeeeeeeeeeeeeeeee

@sebineubauer 37

The ,next packet manager” approach

@]y

- inthe end itis a,package manager”
problem, so maybe there is a ,next package
manager” that solves most of the problems

- there are package managers that solve
parts of the problems even today (e.g. get
numeric python packages working on mac
and on windows using conda...)

- a good end to end, language agnostic
package management solution has a huge
potential

@sebineubauer 38

- package management is only part of the

problem:

- security updates

- auditing

- same environment for development,
testing and production

- no end to end solution so far
- very hard to get the critical mass needed

that it is a holistic solution for the whole
problem for all languages

BlueYonder

Best decisions, delivered daily

The vendoring approach

- Instead of depending on external libraries, you copy the source code
Into your repository

- you don't have any requirements (at least in your language)

- you build just one big application package in one go

- on the target system, you install one package with no dependencies

- slightly similar to the,,conserve virtualenv” approach

BIueYonder

Best decisions, delivered daily
39

The vendoring approach

- no dependency resolution at all - no dependency resolution at all, everything
- easy IDE code discovery needs to be done manually

- no dependecy to external repositories - hard work to keep it up to date

- easy to patch third party libraries - easier to patch third party libraries instead

of contributing and wait for release
- dangerous licensing issues
- useless for library development

BlueYonder

Best decisions, delivered daily

@sebineubauer 40

Can we find a better
solution?

Containers are here to stay, for
many reasons

@sebineubauer

DevOps is the working mode

@sebineubauer

Polyglott: the right language
for the job

Open source/sharing of code is
InCreasing

@sebineubauer

Automation is a must

@sebineubauer

After that problem is solved,
,serverless” becomes a thing

@sebineubauer

And now a
short
discussion!

eeeeeeeeeeeeeeeeeeeeeeeeeeee

Discussion

OS Package manager Container
Conserve virtualenv

Classical/wheels Vendoring

Other??

Next package manager

BlueYonder

Best decisions, delivered daily

Attributions

By BrokenSphere (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
By Rl (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia

Commons

BlueYonder

Best decisions, delivered daily

51

