WHY STORING FILES FOR THE WEB IS
NOT AS STRAIGHTFORWARD AS YOU
MIGHT THINK

Alessandro Molina
@__amol__
amol@turbogears.org

Who am |
o CTO @ AXANT.it, mostly Python company
e TurboGears2 core team member

e Contributions to web world python libraries
o MING MongoDB ODM

o Beaker
o ToscaWidgets2

o Formencode

Background

e Everything starts from a project which was

just a POT with budget constraint.
e Obviously it became the final product.

e |t saved and updated a lot of files, mostly

iImages.

Technologies.

e Short on budget: cloud storage was not an

available choice

e Short on time: developers choose to just
store everything on disk and rely on nginx

to serve them in a good enough manner

The Technical Consultant

e Customer had a technical leader that

enforced deployment decisions.

e Customer decided production
environment three days before the "go

live”

e Due to limited budget he decided they

were not going to rent a server,

The product owner choice

l

|

\

i“"llnmuﬂ‘

B
| ———————————
| —————————
| ————————————————
| ——————————
B
e —————————————————
L ———— e ———————
L ————— e ———————————
. ————————

"

| —

Murphy Law

e They went for Heroku free plan as PaaS

e Heroku doesn't support storing files on
disk

e [he whole software did store files on disk

Panic

e The day before launch, team rewrote 30%
of the software to switch saving files from

disk to GridFS (app was mongodb based)

e [t was an huge hack based on

monkeypatching the attachment classes

e |t went online with practically no testing on
the field.

The day after

e After emergency has been solved it was
clear that we needed a better way to

handle such Issues.

e \We decided to create a tool to solve the
Issue independently from the web

development framekwork in use

DePOT

"('((()"(:(f(’ "71}(/(Ed. '-l
for the Web World

Lessons learnt by working on
TurboGears2 for the past years:

e Web Apps are an unstable environment
when designing a framework:

o Their infrastructure might expand, dowscale or
change during their lifetime,

o The technologies you relied on can change or
even disappear during their lifetime.

o Automatic testing should be easy to implement

o Easily usable wins over features, people will build
features themselves over a solid foundation.

Allow for Infrastructure changes
e Permit to choose between multiple
storage engines just by changing a

configuration file

e Permit switching storage engine at runtime

without breaking past files

e Permit to concurrently use multiple

storages

Have your

[I'DON'TALWAYS STORE FILESON THIRD |
PARTY STORAGES

BUT WIIIEN I Ilﬂ"’l
USEAT LEAST 4 IIF
THEM

memegengrator.ne

Multiple Storages

One “default” storage, any other storage

can be promoted to default, anytime.

When uploading a file it goes to the

default storage unless otherwise specified.

Each storage has a name, files can be
uniquely identified among storages by

storage_name/fileid.

DepotManager

e The DepotManager is the single interface
to DEPOT.

e |t tracks the active storages, the default
one, and the WSGI middleware.

e To work on a storage just get it from the

DepotManager.

Easy to Use
e Simple things should be simple

from depot.manager import DepotManager

Configure a *default* depot to store files on MongoDB
DepotManager.configure('default"', {
"depot.backend': 'depot.io.gridfs.GridFSStorage',
"depot.mongouri': 'mongodb://localhost/db’

})

depot = DepotManager.get()

Save the file and get the fileid
fileid = depot.create(open('/tmp/file.png'))

Get the file back

stored file = depot.get(fileid)
print stored_file.filename
print stored file.content_type

With Batteries
e Complex things should be straightforward

from depot.fields.sqlalchemy import UploadedFileField
from depot.fields.specialized.image import UploadedImageWithThumb

class Document(Base):
__tablename__ = "document’

uid = Column(Integer, autoincrement=True, primary_key=True)
name = Column(Unicode(16), unique=True)

photo field will automatically generate thumbnail
photo = Column(UploadedFileField(upload type=UploadedImageWithThumb))

Store documents with attached files, the source can be a file or bytes
doc = Document(name=u'Foo",
content=b'TEXT CONTENT STORED AS FILE",
photo=open('/tmp/file.png"))

Allow for technology changes
e Attachment field for SQLAlchemy

e Attachment field for MongoDB

e Bultin support for S3, LocalFiles and
GridFS

e Easily pluggable custom Backends

e Delivering files uses a WSGI middleware

compatible with anv web framework.

Empowers your loved queries!

Copes with Database

e T[ransactions rollback should delete newly

uploaded files and recover the previous

ones.

e Deleting an item deletes attached files

(unless rollback happens)

Easy to Extend
e Custom attachments can be easily created

UploadedFileField(upload type=UploadedImageWithMaxSize)

e Filters can be applied to attachments

UploadedFileField(filters=[WithThumbnailFilter()])

e Multiple filters can be applied (rescale

image and create thumbnails)

Custom Attachments

e Attachment Classes are in charge of

storing the actually uploaded file

e They can change the file before it's

uploaded.

e T[hey can add additional data and even

behaviours to the file.

Writing a Custom Attachment

class UploadedImageWithMaxSize(UploadedFile):
max_size = 1024

def process_content(self, content, filename=None, content type=None):
As we are replacing the main file, we need to explicitly pass
the filanem and content type, so get them from the old content.
__, filename, content_type = FileStorage.fileinfo(content)

Get a file object even if content was bytes
content = utils.file from_content(content)

uploaded image = Image.open(content)
if max(uploaded image.size) >= self.max_size:
uploaded _image.thumbnail((self.max_size, self.max_size),
Image.BILINEAR)
content = SpooledTemporaryFile(INMEMORY_ FILESIZE)
uploaded_image.save(content, uploaded image.format)

content.seek(9)

super(UploadedImageWithMaxSize, self).process_content(content,
filename,
content_type)

Filters

Each attachment can have multiple filters

They run after upload, so they can add
metadata or generate new files but not

replace the original one.

They can store additional metadata with

the file, but not behaviours (methods).

Writing a Filter

class WithThumbnailFilter(FileFilter):
def init (self, size=(128,128), format='PNG'):
self.thumbnail size, self.thumbnail format = (size, format)

def on_save(self, uploaded file):
content = utils.file from_content(uploaded file.original content)

thumbnail = Image.open(content)
thumbnail.thumbnail(self.thumbnail size, Image.BILINEAR)
thumbnail = thumbnail.convert('RGBA")

thumbnail.format = self.thumbnail format

output = BytesIO()
thumbnail.save(output, self.thumbnail format)
output.seek(0)

thumb_file name = 'thumb.%s' % self.thumbnail format.lower()
thumb_path, thumb_id = uploaded file.store_ content(output, thumb_file name)
thumb_url = DepotManager.get middleware().url for(thumb_path)

uploaded file.update({'thumb id': thumb_id, ‘thumb _path': thumb_path,
"thumb_url': thumb_url})

Store what you need in metadata

>>> d = DBSession.query(Document).filter_by(name="'Foo"').first()
>>> print d.photo.thumb_url
/depot/default/5blad89e-0d33-11e4-8e2a-0800277ee230

And it's !

Made for the Web

e Storage backends can provide public url
for any CDN

e File information commonin HT TP are

provided as properties out of the box

o content_type
o last_modified
o content_length

o filename

Web Application Friendly
e Need to serve stored files? Just mount
DepotManager.make_middleware around

your app and start serving them.

e |[f files are stored on a backend that
supports HTTP, the user will be
permanently redirected there by the

middleware instead of serving files itself.

Feel free to try it!
e Python26,27 32 33and 34

e pip install filedepot

e Fully Documented

nttps.//depot.readthedocs.org

e Tested with 100% coverage

https./ /travis-ci.org/amol-/depot

Questions?

