
WHY STORING FILES FOR THE WEB IS
NOT AS STRAIGHTFORWARD AS YOU

MIGHT THINK

Alessandro Molina
@__amol__

amol@turbogears.org

Who am I

● CTO @ AXANT.it, mostly Python company

● TurboGears2 core team member

● Contributions to web world python libraries

○ MING MongoDB ODM

○ Beaker

○ ToscaWidgets2

○ Formencode

Background

● Everything starts from a project which was

just a POT with budget constraint.

● Obviously it became the final product.

● It saved and updated a lot of files, mostly

images.

Technologies.

● Short on budget: cloud storage was not an

available choice

● Short on time: developers choose to just

store everything on disk and rely on nginx

to serve them in a good enough manner

The Technical Consultant
● Customer had a technical leader that

enforced deployment decisions.

● Customer decided production

environment three days before the “go

live”

● Due to limited budget he decided they

were not going to rent a server.

The product owner choice

Murphy Law

● They went for Heroku free plan as PaaS

● Heroku doesn’t support storing files on

disk

● The whole software did store files on disk

Ooops

Panic
● The day before launch, team rewrote 30%

of the software to switch saving files from

disk to GridFS (app was mongodb based)

● It was an huge hack based on

monkeypatching the attachment classes

● It went online with practically no testing on

the field.

The day after
● After emergency has been solved it was

clear that we needed a better way to

handle such issues.

● We decided to create a tool to solve the

issue independently from the web

development framekwork in use

Lessons learnt by working on
TurboGears2 for the past years:
● Web Apps are an unstable environment

when designing a framework:

○ Their infrastructure might expand, dowscale or

change during their lifetime.

○ The technologies you relied on can change or

even disappear during their lifetime.

○ Automatic testing should be easy to implement

○ Easily usable wins over features, people will build

features themselves over a solid foundation.

Allow for Infrastructure changes
● Permit to choose between multiple

storage engines just by changing a

configuration file

● Permit switching storage engine at runtime

without breaking past files

● Permit to concurrently use multiple

storages

Have your choice

Multiple Storages
● One “default” storage, any other storage

can be promoted to default, anytime.

● When uploading a file it goes to the

default storage unless otherwise specified.

● Each storage has a name, files can be

uniquely identified among storages by

storage_name/fileid.

DepotManager
● The DepotManager is the single interface

to DEPOT.

● It tracks the active storages, the default

one, and the WSGI middleware.

● To work on a storage just get it from the

DepotManager.

Easy to Use
● Simple things should be simple

from depot.manager import DepotManager

Configure a *default* depot to store files on MongoDB

DepotManager.configure('default', {

 'depot.backend': 'depot.io.gridfs.GridFSStorage',

 'depot.mongouri': 'mongodb://localhost/db'

})

depot = DepotManager.get()

Save the file and get the fileid

fileid = depot.create(open('/tmp/file.png'))

Get the file back

stored_file = depot.get(fileid)

print stored_file.filename

print stored_file.content_type

With Batteries
● Complex things should be straightforward

from depot.fields.sqlalchemy import UploadedFileField

from depot.fields.specialized.image import UploadedImageWithThumb

class Document(Base):

 __tablename__ = 'document'

 uid = Column(Integer, autoincrement=True, primary_key=True)

 name = Column(Unicode(16), unique=True)

 # photo field will automatically generate thumbnail

 photo = Column(UploadedFileField(upload_type=UploadedImageWithThumb))

Store documents with attached files, the source can be a file or bytes

doc = Document(name=u'Foo',

 content=b'TEXT CONTENT STORED AS FILE',

 photo=open('/tmp/file.png'))

Allow for technology changes
● Attachment field for SQLAlchemy

● Attachment field for MongoDB

● Bultin support for S3, LocalFiles and

GridFS

● Easily pluggable custom Backends

● Delivering files uses a WSGI middleware

compatible with any web framework.

Empowers your loved queries!

Copes with Database
● Transactions rollback should delete newly

uploaded files and recover the previous

ones.

● Deleting an item deletes attached files

(unless rollback happens)

Easy to Extend
● Custom attachments can be easily created

UploadedFileField(upload_type=UploadedImageWithMaxSize)

● Filters can be applied to attachments

UploadedFileField(filters=[WithThumbnailFilter()])

● Multiple filters can be applied (rescale

image and create thumbnails)

Custom Attachments
● Attachment Classes are in charge of

storing the actually uploaded file

● They can change the file before it’s

uploaded.

● They can add additional data and even

behaviours to the file.

Writing a Custom Attachment
class UploadedImageWithMaxSize(UploadedFile):

 max_size = 1024

 def process_content(self, content, filename=None, content_type=None):

 # As we are replacing the main file, we need to explicitly pass

 # the filanem and content_type, so get them from the old content.

 __, filename, content_type = FileStorage.fileinfo(content)

 # Get a file object even if content was bytes

 content = utils.file_from_content(content)

 uploaded_image = Image.open(content)

 if max(uploaded_image.size) >= self.max_size:

 uploaded_image.thumbnail((self.max_size, self.max_size),

 Image.BILINEAR)

 content = SpooledTemporaryFile(INMEMORY_FILESIZE)

 uploaded_image.save(content, uploaded_image.format)

 content.seek(0)

 super(UploadedImageWithMaxSize, self).process_content(content,

 filename,

 content_type)

Filters
● Each attachment can have multiple filters

● They run after upload, so they can add

metadata or generate new files but not

replace the original one.

● They can store additional metadata with

the file, but not behaviours (methods).

Writing a Filter
class WithThumbnailFilter(FileFilter):

 def __init__(self, size=(128,128), format='PNG'):

 self.thumbnail_size, self.thumbnail_format = (size, format)

 def on_save(self, uploaded_file):

 content = utils.file_from_content(uploaded_file.original_content)

 thumbnail = Image.open(content)

 thumbnail.thumbnail(self.thumbnail_size, Image.BILINEAR)

 thumbnail = thumbnail.convert('RGBA')

 thumbnail.format = self.thumbnail_format

 output = BytesIO()

 thumbnail.save(output, self.thumbnail_format)

 output.seek(0)

 thumb_file_name = 'thumb.%s' % self.thumbnail_format.lower()

 thumb_path, thumb_id = uploaded_file.store_content(output, thumb_file_name)

 thumb_url = DepotManager.get_middleware().url_for(thumb_path)

 uploaded_file.update({'thumb_id': thumb_id, 'thumb_path': thumb_path,

 'thumb_url': thumb_url})

Store what you need in metadata

>>> d = DBSession.query(Document).filter_by(name='Foo').first()

>>> print d.photo.thumb_url

/depot/default/5b1a489e-0d33-11e4-8e2a-0800277ee230

And it’s WebScale™!

Made for the Web
● Storage backends can provide public url

for any CDN

● File information common in HTTP are

provided as properties out of the box

○ content_type

○ last_modified

○ content_length

○ filename

Web Application Friendly
● Need to serve stored files? Just mount

DepotManager.make_middleware around

your app and start serving them.

● If files are stored on a backend that

supports HTTP, the user will be

permanently redirected there by the

middleware instead of serving files itself.

Feel free to try it!
● Python 2.6, 2.7, 3.2, 3.3 and 3.4

● pip install filedepot

● Fully Documented

https://depot.readthedocs.org

● Tested with 100% coverage

https://travis-ci.org/amol-/depot

Questions?

