WHY YOU DON'T NEED DESIGN
PATTERNS IN PYTHON?

EuroPython 2017

EVERYTHING STARTS WITH A STORY...

STORY OF AEVELOPER
TDD
FOR THE @ Readability
WIN!!I _ ‘!lls' first!

Thousands+ lines of code

and then, one project changed everything

Weight of a project outside framework

FRAMEWORKS ARE SETS OF BUILDING
BLOCKS

-

THEY WORK FINE FOR A SPECIFIC RANGE OF
PROBLEMS

A

Design
patterns!

Design pattern

...general reusable solution to a commonly
occurring problem...
...formalized best practices...

SINGLETON - __NEW__

class Singleton:
_instance = None

def new (cls, *args, **kwargs):

i1f not cls. instance:
cls. instance = super(). new (cls, *args, **kwargs)

return cls. instance

SINGLETON - __NEW__

class Singleton:
_instance = None

def new (cls, *args, **kwargs):

i1f not cls. instance:
cls. instance = super(). new (cls, *args, **kwargs)

return cls. instance

one instance = Singleton()
another instance = Singleton()

one instance is another instance

SINGLETON - @CLASSMETHOD

class Singleton:
_instance = None

def get instance(cls):
if not cls. instance:
cls. instance = cls|()

return cls. instance

one instance = Singleton.get instance()
another instance = Singleton()

one_ instance is another instance

THERE IS A SIMPLER WAY...

class Singleton:
pass

singleton = Singleton()

from my code import singleton

SINGLETONS IN PYTHON?
MODULES!

e Exactly oneinstance living in sys.modules
e Getaninstance easily import module
e Recreate using importlib.reload(module) #Py3

SINGLETON - CONCLUSION

Using a module may be better than creating class

SPEAKING OF MODULES - FACADE

Users

SPEAKING OF MODULES - FACADE

Advertisements

Blog posts

SPEAKING OF MODULES - FACADE

Advertisements

Blog posts

FACADE - CLASS

class AdvertisementsFacade:

def get advert for single post(post):
pass

def get adverts for main page(count):
pass

FACADE - MODULE

def get advert for single post(post):
pass

def get adverts for main page(count):
pass
import advertisements

adverts = advertisements.get adverts for main page(count=3)

\ advertisements
> formatters
> generators
> tests

o Init_.py
&

FACADE - CONCLUSION

Helpful to organize code, no need for a class

COMMAND
Object oriented callback

class Client:
def foo(self):
some obj = SomeClass()
command = Command(some obj)

self.menu item.set command(command)

self.command.execute()

COMMAND - CLASS

class Command:

def execute(discount rate):
self.object.notify users about discount(discount rate)

COMMAND - FUNCTION

def command(discount rate):

some obj.notify users about discount()

or even simpler using standard library's goodies:

import functools

command = functools.partial/(
some obj.notify users about discount, discount rate=0.5

)

command ()

some obj.notify users about discount(discount rate=0.5)

COMMAND - CONCLUSION

With classes makes a little sense in Python

VISITOR PATTERN

Let's say we have a complicated, nested data structure to
parse.

VISITOR - EXAMPLE
ASTs

import time Fffffffffaaahahxai

def ten seconds ago():
now = time.time() Assign Return

return now - 10

VISITOR IMPLEMENTATION - JAVA

public class ASTVisitor {
public void visit(Import import) {}

public void visit(FunctionDef functionDef) {}

public void visit(Assign assign) {}

PYTHON NAIVE IMPLEMENTATION

class ASTVisitor:
def visit(node):
if type(node) == Import:
self.visit import()
elif type(node) == FunctionDef:

self.visit functiondef ()
elif type(node) == Assign:

self.visit assign()
else:

raise AttributeError

PYTHON BETTER IMPLEMENTATION

class ASTVisitor:
def visit(node):
normalized type name = type(node). name .lower()

method name = ' visit ' + normalized type name

method = getattr(self, method name)
method ()

This example comes from Python Cookbook 3rd edition

PYTHON WITH @SINGLEDISPATCH

from functools import singledispatch

def visit(node):
type name = type(node). name
raise AttributeError(f'No handler found for {type name}')

from ast nodes import Assign, FunctionDef

def visit(node):
pass

def visit(node):
pass

Can't be used in classes :(

DECORATOR

Decorator pattern != @decorator functions in Python

e Extend behaviour of a given object
e Possible during runtime

e Multiple times, with different decorators and order

DECORATOR - EXAMPLE

assert hasattr(original object, 'anyattr')

decorated object = Decorator(original object)

assert hasattr(decorated object, 'anyattr')

assert type(original object) != type(decorated object)

Different types, but hey - duck typing

DECORATOR - EXAMPLE 2

class OriginalClass:
def get text(self):
pass

def get number(self):
pass

class Decorator:

def init (self, decorated obj):
self.decorated obj = decorated obj

def get text(self):
return f'{self.decorated obj.get text()}'

def get number(self):
return self.decorated obj.get number()

We have to reimplement all methods

WAIT A SEC... WHAT HAPPENS IF | REQUEST
AN ATTRIBUTE?

some object.some method

Methods are just attributes
Firstly, Python calls a special getattribute

If no attribute was found, getattr iscalled.By
default it just throws an exception

WHAT HAPPENS IF | REQUEST AN
ATTRIBUTE? - __DICT__

class ClsVsObject:
some attr = 1

def init (self):
self.some attr = 2

example = ClsVsObject()
example. dict ['some attr']
example. class . dict ['some attr']

example.some attr
ClsVsObject.some attr

DECORATOR - IMPLEMENTATION

class Decorator:
def init (self, decorated obj):
self.decorated obj = decorated obj

get text(self):

return f'{self.decorated obj.get text()}'

__getattr (self, attr name):
return getattr(self.decorated obj, attr name)

To get a full compatiblity, add other methods: __setattr__,
__delattr__and so on.

SUMMARY

Python is a very flexible tool

IS MAGIC WORTH THE EFFORT?

SUMMARY (THIS TIME FOR REAL)

e know well your tools (Python!)
e getinspiration from other languages and communities
e know a business domain of your project

SEBASTIAN BUCZYNSKI

Working for STX Next
Blogging under breadcrumbscollector.tech
Twitter: EnforcerPL

STXINEXT

https://stxnext.com/
http://localhost:8001/breadcrumbscollector.tech
https://twitter.com/EnforcerPL

