
Writing Beautiful Code
Anand Chitipothu

quality without a name

- The Tao of Programming

A program should be light and agile, its subroutines
connected like a string of pearls. The spirit and intent
of the program should be retained throughout. There
should be neither too little or too much, neither needless
loops nor useless variables, neither lack of structure nor
overwhelming rigidity.

- The Tao of Programming

A program should be light and agile, its subroutines
connected like a string of pearls. The spirit and intent
of the program should be retained throughout.
There should be neither too little or too much, neither
needless loops nor useless variables, neither lack of
structure nor overwhelming rigidity.

- The Tao of Programming

A program should be light and agile, its subroutines
connected like a string of pearls. The spirit and intent of
the program should be retained throughout. There
should be neither too little or too much, neither
needless loops nor useless variables, neither lack
of structure nor overwhelming rigidity.

Programs must be written for people to
read, and only incidentally for machines
to execute.

- Structure and Interpretation of Computer Programs
(The Wizard Book)

Choose Meaningful Names

Two hard things in computer science are
cache invalidation and naming things.

- Phil Karlton

Avoid Generic Names

tmp

tmp2

manager

data

ucf = UpperCaseFormatter()

ba = BankAccount()

formatter = UpperCaseFormatter()

account = BankAccount()

Avoid Abbreviations

Avoid using datatype as name

sum(list)

count_words(string)

sum(numbers)

count_words(sentence)

Nouns & Verbs

Use nouns for variables and classes.
size, price, Task, Scheduler, Bank
Account

Use verbs for functions.
get_file_size, make_account, deposit

largest_line(lines)
files = os.listdir(directory)

file = os.listdir(directory)
for lines in open(filename).readlines():
 sum += int(lines)

Use plural for a list

Reserve Loop Indexes

Use i, j only as loop indexes.

for i in range(10): print i

for i in numbers: result += i

for n in numbers: result += n

Can you improve this?
def get_data(x, y):

 z = []

 for i in x:

 z.append(i[y])

 return z

Example 1

def get_column(dataset, col_index):

 column = []

 for row in dataset:

 column.append(row[col_index])

 return column

Example 1

Never use similar names for completely
different datatypes.
a1 = [1, 2, 3]

a2 = len(x)

values = [1, 2, 3]

n = len(x)

Similar names

Program Organization

Divide & Conquer

Split the program into small independent
modules and functions.

The 7 ± 2 Rule

The number of objects an average human can
hold in working memory is 7 ± 2.

- Miller's Law

Avoid too many nested levels
def update_post(...):

 post = get_post(..)

 if action == 'update-title':

 if title == '':

 ...

 else:

...

 elif action == "add-tag":

 ...

def update_post(...):

 post = get_post(..)

 if action == "update-title":

update_post_title(...)

elif action == "add-tag":

update_post_add_tag(...)

Avoid too many nested levels

Separate what and how
def main():

 filename = sys.argv[1]

 words = read_words(filename)

 freq = wordfreq(words)

 print_freq(freq)

Handle errors separately
def get_user(email):

 if valid_user(email):

 if is_user_blocked(email):

 return Exception("Account is blocked")

 else:

 query = "...."

 row = db.select(query).first()

 return User(row)

 else:

 raise Exception("Invalid email")

Handle errors separately
def get_user(email):

 if not valid_user(email):

 raise ValueError("Invalid email")

 if is_email_blocked(email):

 raise Exception("Account blocked")

 query = "...."

 row = db.select(query).first()

 return User(row)

Comments

Don’t say the obvious
increments x by 2

x = x + 2

compensate for border on both the sides

x = x + 2

The following is an optimization to saves

lot of memcache calls. Handle with care!

...

Explain why you made that choice

-- XXX -- Anand - Sep 2015 --

UTF-conversion was failing for a chinese

user for reasons I couldn't understand.

Added "ignore" as second argument to handle

that temporarily.

name = name.encode("utf-8", "ignore")

Document special cases

find length of the longest line
n = max([len(line) for line in lines])

n = len(longest(lines))

Make Comments Unnecessary

Make Comments Unnecessary
process documents

…
upload them to search engine

…

docs = process_documents(...)

search_engine_submit(docs)

Summary

● Choose meaningful variable names
● Use smaller functions
● Separate what from how
● Always optimize for readability

Questions?

