WRITING
FASTER CODE

WRITING FASTER CODE
AND NOT HATING YOUR
JOB AS A SOFTWARE
DEVELOPER

WRITING

FASTER

https://github.com/switowski

PYTHON WAS NOT MADE TO BE FAST...
..BUT TO MAKE DEVELOPERS FAST.

It was nice to learn Python;

a nice afternoon

Would you like your FIRST program EVER to be like:

public HelloWorld {
public static void main (String[] args) f{
System.out.println("Hello, world!™");

}

or

print ("Hello, world!")

Google :‘:
S reddit

D

2

Atlassian

© Bitbucket

DISQUS

(11 Tube:

hipmunk

Source: https://www.shoop.io/en/blog/25-of-the-most-popular-python-and-django-websites

https://www.shoop.io/en/blog/25-of-the-most-popular-python-and-django-websites

OPTIMIZATION

Google

optimization rules

All Images Videos MNews Shopping Mare - Search tools

About 119.000.000 results (0,29 seconds)

Rules Of Optimization

c2.com/cgifwiki?RulesOfOptimization ~

The "rules” of optimising are a rhetorical device intended to dissuade novice
programmers from cluttering up their programs with vain attempts at writing optimal ...

The Rules of Code Optimization | The Audio Fool - MSDN Blogs
https://blogs.msdn.microsoft.com/.../06/...the-rules-of-code-optimization... =

Jun 14, 2007 - Steve also makes a point about premature optimization, and how it
affects readability. This reminded me of a list of the Rules of Optimization ...

Program optimization - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Program_optimization ~

In computer science, program optimization or software optimization is the process of
modifying The Second Rule of Program Optimization (for experts only!) ...

People also ask

What is an optimization problem? v
What do you mean by code optimization? v
What is optimization in software? v

=

The "rules" of optimising are a rhetorical device intended to dissuade novice programmers from cluttering up their programs with vain attempts at writing optimal code. They are:

1. FirstRuleOfOptimization - Don't.
2. SecondRuleOfOptimization - Don't... yet.

3. ProfileBeforeOptimizing

It is uncertain at present, whether cute devices such as this have, or ever will, change any attitudes.
It changed mine.

Mine, too.

Source:

MichaelJackson used to say (when asked about optimization):

1. Don't.
2. Don't Yet (for experts only).

This is republished in JonBentley's ProgrammingPearls.

And lets not forget these famous quotes:
"The best is the enemy of the good."
-- MrVoltaire
"More computing sins are committed in the name of efficiency (without necessarily achieving it) than for any other single reason - including blind stupidity.”
- W.A. Wulf

"We should forget about small efficiencies, say about 97% of the time: PrematureOptimization is the root of all evil."

-- DonKnuth (who attributed the observation to CarHoare)

See: OptimizeLater, LazyOptimization, OptimizationUnitTest, OptimizationStories, http://c2.com/cgi/wiki?search=optimiz, UniformlySlowCode, CodeDepreciation, RulesOfOptimizationClub

Categor timization

View edit of May 6. 2009 or FindPage with title or text search

1. DON'T
2. DON'T... YET
3. PROFILE

e cProfile
e pstats
e RunSnakeRun, SnakeViz

LEVELS OF OPTIMIZATION

e Design
o Algorithms and data structures

sum = 0

for x 1n range(l, N + 1):
sum += X

print sum

\J

print N * (1 + N) / 2

LEVELS OF OPTIMIZATION

e Design

e Algorithms and data structures
e Source code

e Build level

e Compile level

e Runtime level

OPTIMIZATION IS ALL ABOUT THE SPEED
... AND MEMORY
... AND DISK SPACE
... DISK I/O
.. NETWORK I/O
... POWER CONSUMPTION
... AND MORE.

.1

¢

up maintaining your code will be a violent

Always code as if the guy who ends

psychopath who knows where you live

JOHN WoODS

WRITING FAST PYTHON

A.K.A SOURCE CODE OPTIMIZATION

SETUP

Python 3.5.1 (IPython 1.2.1)

def ultimate answer to life() :
return 42

>>> %timelt ultimate answer to 1life()
10000000 loops, best of 3: 87.1 ns per loop

2.72 x 104" times faster than in The Hitchhiker's Guide to
the Galaxy ;-)

.2

https://en.wikipedia.org/wiki/42_(number)#Hitchhiker.27s_Guide_to_the_Galaxy

#1 COUNT ELEMENTS IN A LIST

how_many = 0

for element in ONE _MILLION_ ELEMENTS:
how_many += 1

print how_many

print len (ONE_MILLION_ ELEMENTS)

96.7 ns
274 000 times faster

abs ()

all()

any ()
ascii()
bin()
bool ()
bytearray()
bytes()
callable()
chr()
classmethod()
compile()
complex()
delattr()

dict()
dir()
divmod ()
enumerate()
eval()
exec()
filter()
float()
format()
frozenset()
getattr()
globals()
hasattr()
hash()

Built-in Functions
help()

hex ()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()
map ()

max ()

memoryview()

min()
next()
object()
oct()
open()
ord()
pow()
print()
property()
range()
repr()
reversed()
round()
set()

And collections module.

setattr()
slice()
sorted()
staticmethod()
stri()

sum()
super()
tuple()
type()
vars()

zip()
__import_ ()

https://docs.python.org/3/library/collections.html

#2 FILTER A LIST

output = []
for element in MILLION NUMBERS:
1f element % 2:
output.append (element)

list(filter(lambda x: x % 2, MILLION NUMBERS))

[1tem for item 1n MILLION NUMBERS 1f item % 2]

127 ms
75% faster

#3 PERMISSIONS OR FORGIVENESS ?

class Foo (object) :
hello = 'world'
foo = Foo ()

1f hasattr(foo, 'hello'):
foo.hello

try:
foo.hello

except AttributeError:
pass

43.1 ns
3.5 times faster

.1

#3 PERMISSIONS OR FORGIVENESS ?

(hasattr (foo, 'foo')

foo
foo
foo

foo
foo
foo

hasattr (foo,
hasattr (foo, 'baz')):

.foo

.bar

.baz

.foo
.bar
.baz
AttributeError:

110 ns
3.64 times faster

'bar")

.2

#3 PERMISSIONS OR FORGIVENESS ?

class Bar (object) :
pass
bar = Bar ()

1f hasattr (bar, 'hello'):
bar.hello

428 ns

try:
bar.hello

except AttributeError:
pass

25% slower

.3

#4 MEMBERSHIP TESTING

def check number (number) :

for 1tem in MILLION_NUMBERS:

1f 1tem == number:
return True
return False

timeit check number (500000)

500000 in MILLION_NUMBERS

8.45 ms
2 times faster

10.

1

100

999999

#4 MEMBERSHIP TESTING

MILLION_NUMBERS

MILLION_NUMBERS

10.

2

#4 MEMBERSHIP TESTING

MILLION_ _SET = set (MILLION_NUMBERS)
$timeit 100 in MILLION_SET

46.3 ns
33 times faster (vs list)

$timeit 999999 in MILLION_SET

63.3 ns
248 000 times faster (vs list)

$timeit set (MILLION_NUMBERS)

10.

3

#5 REMOVE DUPLICATES

unique = []
for element in MILLION ELEMENTS:
1f element not in unigue:
unigue.append (element)

set (MILLION ELEMENTS)

19.3 ms
400 times faster

Trick with OrderedDict (if order matters)

11

https://github.com/brennerm/PyTricks/blob/master/removeduplicatefromlist.py

#6 LIST SORTING

sorted (MILLION_RANDOM NUMBERS)

MILLION_RANDOM NUMBERS.sort ()

77.6 ms
6 times faster

12

#7 1000 OPERATIONS AND 1 FUNCTION

def square (number) :
return number**2
squares = [square(i) for 1 in range(1000)]

def compute squares () :
return [1**2 for 1 1n range(1000)]

314 s
27% faster

13

#8 CHECKING FOR TRUE

1f variable == True:

1f variable i1is True:

24% faster

1f variable:

20.6 ns
73% faster

14 .

#8 CHECKING FOR FALSE

1f variable == False:

1f variable 1s False:

30% faster
1f not wvariable:

19.8 ns
77% faster

14 .

#8 CHECKING FOR EMPTY LIST

len(a_1list) == 0:

a list == []:

60% faster

a list:

32.4 ns
280% faster

14 .

#9 DEF VS LAMBDA

def greet (name) :

return 'Hello {}!'.format (name)
329 ns
greet = lambda name: 'Hello {}!'.format (name)

332 ns

#9 DEF VS LAMBDA

>>> dis.dis (greet)
0 LOAD_CONST 1 (
3 LOAD_ ATTR 0 (format)
6 LOAD FAST 0 (
9 CALL_FUNCTION 1 (
12 RETURN_ VALUE

1 positional, 0 keyword pair)

Stack Overflow question on when lambda might be necessary

15.

2

http://stackoverflow.com/questions/29804774/why-is-lambda-expression-necessary-in-this-example-python

list ()

#10 LIST() OR[]

22.5 ns

4.6 times faster

16.

1

dict ()

{}

#10 DICT() OR {}

93 ns

1.7 times faster

16.

2

DANGER
ZONE

#11 VARIABLES ASSIGNMENT

AR A B A
O W 0o JO0 Ul i WLWDND K

qlwlelrltIYIulilolp: 1I2l3l4l5l6l7l8l9lo

56.4 ns
27% faster (but please don't)

18

def

def

#12 VARIABLES LOOKUP

squares (MILLION_ NUMBERS) :

output = []

for element in MILLION NUMBERS:
output.append(element*element)

return output

squares_faster (MILLION_ NUMBERS) :

output = []

append = output.append # <= ! 111111

for element in MILLION NUMBERS:
append (element*element)

return output

110 ms
35% faster (and 27% more confusing)

19

SUMMARY

e There are different kinds of optimization
e There are different levels of optimization
e Source code optimizations adds up
e Source code optimizations is cheap

= |diomatic Python

= Don't reinvent the wheel
e Profile your code and be curious!

20

SEBASTIAN WITOWSKI

CE/RW
\

NS

THANK YOU!

HAPPY AND FAST
CODING!

Check the slides at GitHub:

http://switowski.github.io/europython2016

